• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Methanol-Reforming Catalysts for Fuel Cell Vehicles

Agrell, Johan January 2003 (has links)
Vehicles powered by proton exchange membrane (PEM) fuelcells are approaching commercialisation. Being inherently cleanand efficient sources of power, fuel cells constitute asustainable alternative to internal combustion engines to meetfuture low-emission legislation. The PEM fuel cell may befuelled directly by hydrogen, but other alternatives appearmore attractive at present, due to problems related to theproduction, transportation and handling of hydrogen. Fuelling with an alcohol fuel, such as methanol, which isoxidised directly at the anode, offers certain advantages.However, the efficiency of the direct-methanol fuel cell (DMFC)is still significantly lower than that of the conventionalhydrogen-fuelled PEM fuel cell, due to some technical problemsremaining unsolved. Hence, indirect fuelling by a reformedliquid fuel may be the most feasible option in the early stagesof the introduction of fuel cell vehicles. The work presented in this thesis concerns the developmentof catalysts for production of hydrogen from methanol bypartial oxidation, steam reforming or a combination thereof.The work contributes to the understanding of how thepreparation route affects catalyst morphology and howphysicochemical properties determine catalytic behaviour andreaction pathways. The thesis is a summary of seven papers published inscientific periodicals. The first paper (Paper I) reviews thecurrent status of catalytic hydrogen generation from methanol,focusing on the fuel cell application. Paper II investigatesthe partial oxidation of methanol over Cu/ZnO catalystsprepared in microemulsion and by a conventionalco-precipitation technique. The activity for methanolconversion in the low-temperature regime is found to besignificantly higher over the former materials and the workcontinues by determining the nature of possible Cu-ZnOinteractions in the catalysts by studying their physicochemicalproperties more thoroughly (Paper III). In Paper IV, thepathways for methanol conversion via both partial oxidation andsteam reforming are elucidated. In Paper V, partial oxidation of methanol is studied overPd/ZnO catalysts prepared by microemulsion technique and againcompared to conventional materials. This investigationdemonstrates that although possessing high methanol conversionactivity, palladium-based catalysts are not suitable forreforming in fuel cell applications due to the considerableamounts of carbon monoxide formed. In Paper VI, methanol reforming is investigated over acommercial Cu/ZnO/Al2O3 catalyst. The mechanisms for carbonmonoxide formation and strategies for its suppression arediscussed, as well as reactor design aspects. The study alsoincludes some simple kinetic modelling. Finally, Paper VIIdescribes the optimisation of catalyst composition and processconditions to reach high hydrogen production efficiency at lowoperating temperatures and with minimum carbon monoxideformation. <b>Keywords:</b>PEM fuel cells, hydrogen, methanol, reforming,(partial) oxidation, reaction pathways, carbon monoxide,catalyst, microemulsion, Cu/ZnO, Pd/ZnO, copper, redoxproperties, oxidation state
2

Development of Methanol-Reforming Catalysts for Fuel Cell Vehicles

Agrell, Johan January 2003 (has links)
<p>Vehicles powered by proton exchange membrane (PEM) fuelcells are approaching commercialisation. Being inherently cleanand efficient sources of power, fuel cells constitute asustainable alternative to internal combustion engines to meetfuture low-emission legislation. The PEM fuel cell may befuelled directly by hydrogen, but other alternatives appearmore attractive at present, due to problems related to theproduction, transportation and handling of hydrogen.</p><p>Fuelling with an alcohol fuel, such as methanol, which isoxidised directly at the anode, offers certain advantages.However, the efficiency of the direct-methanol fuel cell (DMFC)is still significantly lower than that of the conventionalhydrogen-fuelled PEM fuel cell, due to some technical problemsremaining unsolved. Hence, indirect fuelling by a reformedliquid fuel may be the most feasible option in the early stagesof the introduction of fuel cell vehicles.</p><p>The work presented in this thesis concerns the developmentof catalysts for production of hydrogen from methanol bypartial oxidation, steam reforming or a combination thereof.The work contributes to the understanding of how thepreparation route affects catalyst morphology and howphysicochemical properties determine catalytic behaviour andreaction pathways.</p><p>The thesis is a summary of seven papers published inscientific periodicals. The first paper (Paper I) reviews thecurrent status of catalytic hydrogen generation from methanol,focusing on the fuel cell application. Paper II investigatesthe partial oxidation of methanol over Cu/ZnO catalystsprepared in microemulsion and by a conventionalco-precipitation technique. The activity for methanolconversion in the low-temperature regime is found to besignificantly higher over the former materials and the workcontinues by determining the nature of possible Cu-ZnOinteractions in the catalysts by studying their physicochemicalproperties more thoroughly (Paper III). In Paper IV, thepathways for methanol conversion via both partial oxidation andsteam reforming are elucidated.</p><p>In Paper V, partial oxidation of methanol is studied overPd/ZnO catalysts prepared by microemulsion technique and againcompared to conventional materials. This investigationdemonstrates that although possessing high methanol conversionactivity, palladium-based catalysts are not suitable forreforming in fuel cell applications due to the considerableamounts of carbon monoxide formed.</p><p>In Paper VI, methanol reforming is investigated over acommercial Cu/ZnO/Al2O3 catalyst. The mechanisms for carbonmonoxide formation and strategies for its suppression arediscussed, as well as reactor design aspects. The study alsoincludes some simple kinetic modelling. Finally, Paper VIIdescribes the optimisation of catalyst composition and processconditions to reach high hydrogen production efficiency at lowoperating temperatures and with minimum carbon monoxideformation.</p><p><b>Keywords:</b>PEM fuel cells, hydrogen, methanol, reforming,(partial) oxidation, reaction pathways, carbon monoxide,catalyst, microemulsion, Cu/ZnO, Pd/ZnO, copper, redoxproperties, oxidation state</p>
3

Computational Model of the Nucleophilic Acyl Substitution Pathway

Belknap, Ethan M. 09 June 2021 (has links)
No description available.
4

Validation of a Sapphire Gas-Pressure Cell for Real-Time In Situ Neutron Diffraction Studies of Hydrogenation Reactions

Finger, Raphael, Hansen, Thomas C., Kohlmann, Holger 08 May 2023 (has links)
A gas-pressure cell, based on a leuco-sapphire single-crystal, serving as a pressure vessel and sample holder, is presented for real time in situ studies of solid-gas hydrogenation reactions. A stainless steel corpus, coated with neutron absorbing varnish, allows alignment for the single-crystal sample holder for minimizing contributions to the diffraction pattern. Openings in the corpus enable neutron scattering as well as contactless temperature surveillance and laser heating. The gas-pressure cell is validated via the deuteration of palladium powder, giving reliable neutron diffraction data at the high-intensity diffractometer D20 at the Institut Laue-Langevin (ILL), Grenoble, France. It was tested up to 15.0 MPa of hydrogen pressure at room temperature, 718 K at ambient pressure and 584 K at 9.5 MPa of hydrogen pressure.
5

Facile Synthesis of ZnWO4/Bi2WO6, FeWO4/Bi2WO6, and TiO2/Bi2WO6 Nanocomposites via a Modified Pechini Sol-gel Method and their Photocatalytic Performance for Bisphenol A Degradation

Zhang, Ziyang January 2020 (has links)
No description available.
6

Estudo de adsorção de impurezas moleculares e caminhos de reação em nanofios de ouro / Study of adsorption of molecular impurities and reaction pathways in gold nanowires

Nascimento, Ana Paula Favaro, 1982- 22 August 2018 (has links)
Orientador: Edison Zacarias da Silva / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-22T13:09:46Z (GMT). No. of bitstreams: 1 Nascimento_AnaPaulaFavaro_D.pdf: 24653202 bytes, checksum: cb09f1eecbbf100b37ad50fd3a26f857 (MD5) Previous issue date: 2013 / Resumo: A fabricação e o estudo de nanofios de ouro despertam grande interesse na comunidade científica, na tentativa de maior entendimento de efeitos quânticos de sistemas em escala reduzida, assim como na possibilidade de seu uso em aplicações tecnológicas. Uma vez que os nanofios de ouro apresentam propriedades surpreendentes quando dopados por impurezas atômicas fomos motivados a estudar como estas se formam. Devido ao fato de em escala nanoscópica o ouro apresentar atividade catalítica, consideramos que a presença de impurezas se deve a reação de pequenas moléculas em nanofios de Au. O estudo foi realizado por meio de cálculos abinitio via Teoria do Funcional da Densidade, usando o código computacional SIESTA. A metodologia para o estudo da estrutura eletrônica desses sistemas foi a de otimização de geometria e de dinâmica molecular ab initio. Nosso foco de estudo foi encontrar caminhos reacionais para a formação de impurezas atômicas de carbono ou de oxigênio nas cadeias atômicas lineares de nanofios monoatômicos. A análise se baseou na interação entre duas moléculas catalisada pelo nanofio, as moléculas consideradas em nosso estudo foram CO e O2. Um estudo extensivo e detalhado das possíveis reações foi feito. Dentre os vários caminhos estudados, uma reação sequencial onde uma molécula de O2 é adsorvida por apenas um dos seus oxigênios, inicia um processo, que seguido pela adsorção de uma molécula de CO, leva a formação de um complexo O2-CO ligado a cadeia atômica do nanofio. Nós mostramos situações onde este complexo fica ativado e reage formando uma molécula de CO2 que vai para a fase gasosa deixando o nanofio dopado com um átomo de oxigênio. Portanto este trabalho apresenta um caminho reacional para a formação de uma impureza atômica na cadeia atômica de um nanofio de ouro, uma questão que esperava uma solução a quase uma década. / Abstract: The manufacture and the study of gold nanowires weakened great interest of the scientific community in the quest for better understanding of the quantum effects in systems with reduced scales and also due to the possibility of their use in technological applications. Since gold nanowires present novel and surprising properties when doped with atomic impurities, this led us into the search to understand how these impurities can be produced. Due to the fact that gold in nanoscale presents catalytic activity, we considered the possibility of chemical reactions with small molecules in the presence of gold nanowires. The present study was performed with ab initio calculations based in the density functional theory as implemented by the SIESTA code. The methodology for the electronic structure studies was the geometry optimization using conjugated gradient method and abinitio molecular dynamics. Our focus was to find reaction paths to produce atomic impurities of carbon and oxygen in linear atomic chains of gold nanowires. The analysis was based in the reaction of two molecules catalized by the nanowire, the molecules considered in this study were CO and O2. An extensive and detailed study of possible pathways was undertaken. Among the various paths, a sequential reaction where only one O of a adsorbed O2 molecule attached to the nanowire, started the process, followed by the adsorption of a CO molecule nearby that formed an O2-CO complex attached to the atomic chain of the nanowire. We presented circumstances in which this complex becomes activated and evolves to form a CO2 molecule that goes into the gas phase leaving an atomic oxygen impurity attached to the linear chain. Therefore, this work presented a reactional path to the formation of an atomic impurity in the atomic chain of a gold nanowire, a question that waited an answer for almost ten years. / Doutorado / Física / Doutora em Ciências
7

Frustrated Lewis pair-mediated C–O or C–H bond activation of ethers

Holthausen, Michael H., Mahdi, Tayseer, Schlepphorst, Christoph, Hounjet, Lindsay J., Weigand, Jan J., Stephan, Douglas W. 19 December 2019 (has links)
Protocols for the FLP-mediated transformation of ethers are presented. Distinct reaction pathways involving either C–O or C–H bond activation occur depending on the application of oxophilic B(C6F5)3 or hydridophilic tritylium ions as the Lewis acid.

Page generated in 0.082 seconds