• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 10
  • 10
  • 10
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of platinum-group metal nanophase electrocatalysts employed in the direct methanol fuel cell and solid-polymer electrolyte electrolyser

Williams, Mario January 2005 (has links)
This study investigated the applicability of various analytical tools for the qualitative and quantitative characterization of nanophase electrocatalysts.
2

Characterization of platinum-group metal nanophase electrocatalysts employed in the direct methanol fuel cell and solid-polymer electrolyte electrolyser

Williams, Mario January 2005 (has links)
This study investigated the applicability of various analytical tools for the qualitative and quantitative characterization of nanophase electrocatalysts.
3

Polarization behaviour on microfabricated metallic gas-diffusion electrode structures /

Tang, Ki-lai. January 1992 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1992.
4

Polarization behaviour on microfabricated metallic gas-diffusion electrode structures

鄧其禮, Tang, Ki-lai. January 1992 (has links)
published_or_final_version / Chemistry / Master / Master of Philosophy
5

A mathematical model of a tubular solid oxide fuel cell

Bessette, Norman F., II 08 1900 (has links)
No description available.
6

Energy production from coal syngas containing H₂S via solid oxide fuel cells utilizing lanthanum strontium vanadate anodes

Cooper, Matthew E. January 2008 (has links)
Thesis (Ph.D.)--Ohio University, August, 2008. / Title from PDF t.p. Includes bibliographical references.
7

Development of spinel-based electrode supports for solid oxide fuel cells

Stefan, Elena January 2013 (has links)
The high temperature oxidation of ferritic stainless steel interconnects results in chromium poisoning of the solid oxide fuel cell (SOFC) electrodes, which is a limiting factor for their utilisation as SOFC interconnects. Chromium-rich spinel materials were studied as electrode supports that would be situated at the interface between interconnect and electrode, in order to reduce the effect of chromium poisoning of the electrodes. The main goal of this thesis was to find chromium-rich spinel materials with good electrical conductivity (σ ≥ 0.1 S∙cm⁻¹) in air and reducing atmosphere, chemically and mechanically stable in SOFC testing conditions. The structure and properties of newly formulated chromium-rich spinels, such as Mn₁₊ₓCr₂₋ₓO₄ (x = 0, 0.5), MnFeₓCr₂₋ₓO₄ (x = 0.1, 1), MgMnCrO₄, MnLiₓCr₂₋ₓO₄ (x = 0.1) and MgMₓCr₂₋ₓO₄, (M = Li, Mg, Ti, Fe, Cu, Ga) were studied aiming at their application as electrode support material for solid oxide fuel cells. Cation distributions were determined by Rietveld refinement from X-ray diffraction (XRD), within the limits of XRD precision and correlated with electrical properties determined experimentally. The chemical stability in reducing conditions was studied and the reduction effects upon materials were evaluated by XRD phase analysis and microstructure analysis. It was found that MnMₓCr₂₋ₓO₄ materials have a limited stability to reduction, only MnCr₂O₄ proved to have good stability when reduced, with negative influence for its p-type semiconductor conductivity. Even though MnFeCrO₄ had limited stability to reduction, in reducing conditions the conductivity changed from p-type to n-type semiconductor. A similar behaviour to reduction was observed for MgFeCrO₄. Also the mechanical and chemical compatibility of some spinels with YSZ was studied in terms of thermal expansion coefficient (TEC/K⁻¹), sintering step and possible chemical reactions. Lithium titanate spinels, starting with LiCrTiO₄, were investigated in terms of structure, properties and spinel - ramsdellite phase transition temperature also with the purpose of new material development. For these materials positive results were obtained in conductivity and chemical stability in reducing conditions. The performance of MnFeCrO₄ and MgFeCrO₄ as electrode support materials was investigated when used alone or impregnated with (La₀.₇₅Sr₀.₂₅)₀.₉₇Cr₀.₅Mn₀.₅O₃, La₀.₈Sr₀.₂FeO₃, Ce₀.₉Gd₀.₁O₂, CeO₂ or Pd. Composite anodes for SOFC were prepared by aqueous infiltration of nitrate salts into porous MnFeCrO₄ and MgFeCrO₄ scaffolds and studied by electrochemical impedance spectroscopy (EIS) in symmetrical cell configuration. The performance of the composite anodes was evaluated in humidified 5%H₂/Ar in order to understand their stability and performance at 850 °C or lower temperature with respect to the porous substrates. It was found that all the impregnated phases adhere very well to the spinel and considerably enhance performance and stability to a level required for SOFC applications. An interesting next step in this work would be to apply such spinel materials on steel interconnects, integrate them into testing SOFC devices and evaluate their effect upon chromium poisoning of the electrodes.
8

Quantitative characterization and modeling of the microstructure of solid oxide fuel cell composite electrodes

Zhang, Shenjia 23 August 2010 (has links)
Three-phase porous composites containing electrolyte (ionic conductor), electronic conductor, and porosity phases are frequently used for solid oxide fuel cell (SOFC) electrodes. Performance of such electrodes is microstructure sensitive. Topological connectivity of the microstructural phases and total length of triple phase boundaries are the key microstructural parameters that affect the electrode performance. These microstructural attributes in turn depend on numerous process parameters including relative proportion, mean sizes, size distributions, and morphologies of the electrolyte and electronic conductor particles in the powder mix used for fabrication of the composites. Therefore, improvement of the performance of SOFC composite electrodes via microstructural engineering is a complex multivariate problem that requires considerable input from microstructure modeling and simulations. This dissertation presents a new approach for geometric modeling and simulation of three-dimensional (3D) microstructure of three-phase porous composites for SOFC electrodes and provides electrode performance optimization guidelines based on the parametric studies on the effects of processing parameters on the total length and topological connectivity of the triple phase boundaries. The model yields an equation for total triple phase boundary length per unit volume (LTPB) that explicitly captures the dependence of LTPB on relative proportion of electrolyte and electronic conductor phases; volume fraction of porosity; and mean size, coefficient of variation, and skewness of electrolyte and electronic conductor particle populations in the initial powder mix. The equation is applicable to electrolyte and electronic conductor particles of any convex shapes and size distributions. The model is validated using experimental measurements performed in this research as well as the measurements performed by other researchers. Computer simulations of 3D composite electrode microstructures have been performed to further validate the microstructure model and to study topological connectivity of the triple phase boundaries in 3D microstructural space. A detailed parametric analysis reveals that (1) non-equiaxed plate-like, flake-like, and needle-like electrolyte and electronic conductor particle shapes can yield substantially higher LTPB; (2) mono-sized electrolyte and electronic conductor powders lead to higher LTPB as compared to the powders having size distributions with large coefficients of variation; (3) LTPB is inversely proportional to the mean sizes of electrolyte and electronic conductor particles; (4) a high value of LTPB is obtained at the lowest porosity volume fraction that permits sufficient connectivity of the pores for gas permeability; and (5) LTPB is not sensitive to the relative proportion of electrolyte and electronic conductor phases in the composition regime of interest in composite electrode applications.
9

Synthesis and Characterization of Nanostructured Electrodes for Solid State Ionic Devices

Zhang, Yuelan 20 November 2006 (has links)
The demands for advanced power sources with high energy efficiency, minimum environmental impact, and low cost have been the impetus for the development of a new generation of batteries and fuel cells. One of the key challenges in this effort is to develop and fabricate effective electrodes with desirable composition, microstructure and performance. This work focused on the design, fabrication, and characterization of nanostructured electrodes in an effort to minimize electrode polarization losses. Solid-state diffusion often limits the utilization and rate capability of electrode materials in a lithium-ion battery, especially at high charge/discharge rates. When the fluxes of Li+ insertion or extraction exceed the diffusion-limited rate of Li+ transport within the bulk phase of an electrode, concentration polarization occurs. Further, large volume changes associated with Li+ insertion or extraction could induce stresses in bulk electrodes, potentially leading to mechanical failure. Interconnected porous materials with high surface-to-volume ratio were designed to suppress the stress and promote mass transport. In this work, electrodes with these unique architectures for lithium ion batteries have been fabricated to improve the cycleability, rate capability and capacity retention. Cathodic interfacial polarization represents the predominant voltage loss in a low-temperature SOFC. For the first time, regular, homogeneous and bimodal porous MIEC electrodes were successfully fabricated using breath figure templating, which is self-assembly of the water droplets in polymer solution. The homogeneous macropores promoted rapid mass transport by decreasing the tortuosity. And mesoporous microstructure provided more surface areas for gas adsorption and more TPBs for the electrochemical reactions. Moreover, composite electrodes were developed with a modified sol-gel process for honeycomb SOFCs. The sol gel derived cathodes with fine grain size and large specific surface area, showed much lower interfacial polarization resistances than those prepared by other existing processing methods. Nanopetals of cerium hydroxycarbonate have been synthesized via a controlled hydrothermal process in a mixed water-ethanol medium. The formation of the cerium compound depends strongly on the composition of the precursors, and is attributed to the favored ethanol oxidation by Ce(IV) ions over Ce(IV) hydrolysis process. Raman studies showed that microflower CeO2 preferentially stabilizes O2 as a peroxide species on its surface for CO oxidation.
10

Paper-based lithium-Ion batteries using carbon nanotube-coated wood microfiber current collectors

Aliahmad, Nojan 06 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The prevalent applications of energy storage devices have incited wide-spread efforts on production of thin, flexible, and light-weight lithium-ion batteries. In this work, lithium-ion batteries using novel flexible paper-based current collectors have been developed. The paper-based current collectors were fabricated from carbon nanotube (CNT)-coated wood microfibers (CNT-microfiber paper). This thesis presents the fabrication of the CNT-microfiber paper using wood microfibers, coating electrode materials, design and assemblies of battery, testing methodologies, and experimental results and analyses. Wood microfibers were coated with carbon nanotubes and poly(3,4-ethylenedioxythiophene) (PEDOT) through an electrostatic layer-by-layer nanoassembely process and formed into a sheet, CNT-microfiber paper. The CNT loading of the fabricated paper was measured 10.1 μg/cm2 subsequently considered. Electrode material solutions were spray-coated on the CNT-microfiber paper to produce electrodes for the half and full-cell devices. The CNT current collector consists of a network structure of cellulose microfibers at the micro-scale, with micro-pores filled with the applied conductive electrode materials reducing the overall internal resistance for the cell. A bending test revealed that the paper-based electrodes, compared to metal ones, incurred fewer damages after 20 bends at an angle of 300o. The surface fractures on the paper-based electrodes were shallow and contained than metallic-based electrodes. The micro-pores in CNT-microfiber paper structure provides better adherence to the active material layer to the substrate and inhibits detachment while bending. Half-cells and full-cells using lithium cobalt oxide (LCO), lithium titanium oxide (LTO), and lithium magnesium oxide (LMO) were fabricated and tested. Coin cell assembly and liquid electrolyte was used. The capacities of half-cells were measured 150 mAh/g with LCO, 158 mAh/g with LTO, and 130 mAh/g with LMO. The capacity of the LTO/LCO full-cell also was measured 126 mAh/g at C/5 rate. The columbic efficiency of the LTO/LCO full-cell was measured 84% for the first charging cycle that increased to 96% after second cycle. The self-discharge test of the full-cell after charging to 2.7 V at C/5 current rate is showed a stable 2 V after 90 hours. The capacities of the developed batteries at lower currents are comparable to the metallic electrode-based devices, however, the capacities were observed to drop at higher currents. This makes the developed paper-based batteries more suitable for low current applications, such as, RFID tags, flexible electronics, bioassays, and displays. The capacities of the batteries at higher current can be improved by enhancing the conductivity of the fibers, which is identified as the future work. Furthermore, fabrication of an all solid state battery using solid electrolyte is also identified as the future work of this project.

Page generated in 0.0932 seconds