• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 65
  • 65
  • 29
  • 23
  • 21
  • 18
  • 17
  • 16
  • 14
  • 13
  • 11
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of Test Methodology for Evaluation of Fuel Economy in Motorcycle Engines

Michlberger, Alexander 17 April 2014 (has links)
No description available.
12

Willans Line Based Equivalent Consumption Minimization Strategy for Charge Sustaining Hybrid Electric Vehicle

Tollefson, Christian Roland 21 September 2020 (has links)
Energy management strategies for charge sustaining hybrid electric vehicles reduce fuel power consumption from the engine and electric power consumption from the motor while meeting output power demand. The equivalent consumption minimization strategy is a real time control strategy which uses backward facing models and an equivalence ratio to calculate the lowest total fuel power consumption. The equivalence ratio quantifies the fuel power to battery power conversion process of the hybrid electric vehicle components and therefore quantifies electric power consumption in terms of fuel power consumption. The magnitude of the equivalence ratio determines when the hybrid electric vehicle commands a conventional, electric, or hybrid mode of operation. The equivalence ratio therefore influences the capability of the control strategy to meet charge sustaining performance. Willans line models quantify the input power to output power relationship for powertrain and drivetrain components with a linear relationship and a constant offset. The hybrid electric vehicle model performance is characterized using three Willans line models in the equivalent consumption minimization strategy. The slope of the Willans line models, or marginal efficiency, is used to generate a single equivalence ratio which quantifies the fuel to battery energy conversion process for the hybrid electric vehicle. The implementation of a Willans line based equivalent consumption minimization strategy reduces total fuel power consumption while achieving charge sustaining performance over mild and aggressive drive cycles. / Master of Science / The charge sustaining hybrid electric vehicle in this paper generates output power with an internal combustion engine powered by a fuel tank and an electric traction motor powered by a battery pack. Hybrid electric vehicle energy management strategies generate torque commands to meet output power demand based on the minimum total input power from both the fuel tank and battery pack. Willans line models simplify the energy management strategy by quantifying the output power to input power relationship, or efficiency, of each component with a linear slope and constant offset. The use of Willans line models quantifies the efficiency of the hybrid electric vehicle with three linear relationships. Energy management strategies also ensure the battery pack starts and ends at the same operating condition to maintain charge sustaining performance. Charge sustaining hybrid electric vehicles therefore use the battery pack as an energy buffer and do not need to be charged by an external power supply since all energy comes from fuel. The output to input power relationship of Willans line models quantifies the power conversion of the hybrid electric vehicle and coupled to a term which accounts for changes in the battery pack. The use of Willans line models in hybrid electric vehicles effectively generates torque commands to the engine and motor while improving fuel economy and maintaining charge sustaining performance.
13

Understanding the challenges in HEV 5-cycle fuel economy calculations based on dynamometer test data

Meyer, Mark J. 15 December 2011 (has links)
EPA testing methods for calculation of fuel economy label ratings, which were revised beginning in 2008, use equations that weight the contributions of fuel consumption results from multiple dynamometer tests to synthesize city and highway estimates that reflect average U.S. driving patterns. The equations incorporate effects with varying weightings into the final fuel consumption, which are explained in this thesis paper, including illustrations from testing. Some of the test results used in the computation come from individual phases within the certification driving cycles. This methodology causes additional complexities for hybrid electric vehicles, because although they are required to have charge-balanced batteries over the course of a full drive cycle, they may have net charge or discharge within the individual phases. The fundamentals of studying battery charge-balance are discussed in this paper, followed by a detailed investigation of the implications of per-phase charge correction that was undertaken through testing of a 2010 Toyota Prius at Argonne National Laboratory's vehicle dynamometer test facility. Using the charge-correction curves obtained through testing shows that phase fuel economy can be significantly skewed by natural charge imbalance, although the end effect on the fuel economy label is not as large. Finally, the characteristics of the current 5-cycle fuel economy testing method are compared to previous methods through a vehicle simulation study which shows that the magnitude of impact from mass and aerodynamic parameters vary between labeling methods and vehicle types. / Master of Science
14

Fuel economy modeling of light-duty and heavy-duty vehicles, and coastdown study

Ates, Murat 03 September 2009 (has links)
Development of a fuel economy model for light-duty and heavy-duty vehicles is part of the Texas Department of Transportation’s “Estimating Texas Motor Vehicle Operating Costs” project. A literature review for models that could be used to predict the fuel economy of light-duty and heavy-duty vehicles resulted in selection of coastdown coefficients to simulate the combined effects of aerodynamic drag and tire rolling resistance. For light-duty vehicles, advantage can be taken of the modeling data provided by the United States Environmental Protection Agency (EPA) for adjusting chassis dynamometers to allow accurate determination of emissions and fuel economy so that compliance with emissions standards and Corporate Average Fuel Economy (CAFE) regulations can be assessed. Initially, EPA provided vehicle-specific data that were relevant to a physics-based model of the forces at the tire-road interface. Due to some limitations of these model parameters, EPA now provides three vehicle-specific coefficients obtained from vehicle coastdown data. These coefficients can be related back to the original physics-based model of the forces at the tire-road interface, but not in a manner that allows the original modeling parameters to be extracted from the coastdown coefficients. Nevertheless, as long as the operation of a light-duty vehicle does not involve extreme acceleration or deceleration transients, the coefficients available from the EPA can be used to accurately predict fuel economy. Manufacturers of heavy-duty vehicles are not required to meet any sort of CAFE standards, and the engines used in heavy-duty vehicles, rather than the vehicles themselves, are tested (using an engine dynamometer) to determine compliance with emissions standards. Therefore, EPA provides no data that could be useful for predicting the fuel economy of heavy-duty vehicles. Therefore, it is necessary to perform heavyduty coastdown tests in order to predict fuel economy, and use these tests to develop vehicle-specific coefficients for the force at the tire-road interface. Given these coefficients, the fuel economy of a heavy-duty vehicle can be calculated for any driving schedule. The heavy-duty vehicle model developed for this project is limited to pre-2007 calendar year heavy-duty vehicles due to the adverse effects of emissions components that were necessary to comply with emissions standards that went into effect January 2007. / text
15

Modelling and experimentation on air hybrid engine concepts for automotive applications

Psanis, Christodoulos January 2007 (has links)
Hybrid powertrains that use compressed air to help power a vehicle could dramatically improve the fuel economy, particularly in cities and urban areas where the traffic conditions involve a lot of starts and stops. In such conditions, a large amount of fuel is needed to accelerate the vehicle, and much of this is converted to heat in brake friction during decelerations. Capturing, storing and reusing this braking energy to produce additional power can therefore improve fuel efficiency. In this study, three approaches towards air hybrid powertrains are proposed and analyzed. In the first approach, an energy recovery valve or two shut-off valves connected to a convenient access hole on the engine cylinder is proposed to enable the cylinder to operate as a regenerative compressor and/or expander when required. In the second approach, one of the exhaust valves in an engine equipped with a Fully Variable Valve Actuation (FVVA) system is pneumatically or hydraulically operated as a dedicated gas transfer valve connected to an air reservoir. The third approach combines the advantages of the conventional valvetrain’s simplicity with emerging production technologies. In order to achieve this, two well established technologies are used in addition to valve deactivation; Variable Valve Timing (VVT) and/or Cam Profile Switching (CPS). Provided that a conventional, camshaft-operated variable valvetrain is used, the need of adopting fully variable valve actuation is eliminated and thus only minor modifications to the engine architecture are required. The aforementioned concepts are described in details. Some basic principles of their operation are also discussed in order to provide a better understanding on how fuel economy is achieved by means of engine hybridization and regenerative braking. Both experimental and computational results are presented and compared. Finally, a vehicle and driveline model, which simulates the operation of a typical passenger vehicle in urban driving conditions and predicts the efficiency of the energy regeneration, has been set up and used to study the effects of the application of each air hybrid concept on the vehicle’s energy usage throughout the New European Driving Cycle (NEDC) and the 10-15 driving cycle. The results have shown that each concept involves the optimization of valve timing for the best regenerative energy recovery and its subsequent usage. For the modelled vehicle, it has been shown that any of the three concept engines is capable of providing more braking power than needed during every deceleration and braking process, especially throughout the urban driving part of each cycle. The recovered braking energy in the form of compressed air has proved to be always sufficient to start the engine, if stop-and-start engine operation strategy is to be adopted.
16

Estimativa da disposição a pagar por eficiência energética no mercado de carros novos no Brasil / Estimation of the willingness to pay for energy efficiency in the new car market in Brazil

Godeli, Arthur de Souza 09 June 2017 (has links)
É esperado que o consumidor, no momento de decidir qual carro ele irá adquirir, leve em conta, entre diversos outros fatores, a eficiência energética do modelo. Contudo, diversos trabalhos apontam que o consumidor subvaloriza o gasto total que terá com combustível no momento que decide qual modelo de carro irá comprar. Como carros são grandes produtores de externalidades, e por isso, frequentemente são objetos de política pública, é necessário entender esse comportamento do consumidor para que os formuladores o possam levar em conta no momento de fazer as políticas públicas. O objetivo principal desse trabalho ´e estimar o peso relativo que o consumidor brasileiro dá à economia de combustível no momento da escolha da compra do carro, e verificar se, de fato, há uma subvalorização da importância do gasto com combustível no mercado de carros novos no Brasil. Para tentar responder a pergunta proposta serão utilizados duas metodologias distintas. A primeira será uma regressão de preços hedônicos, e a segunda um modelo de demanda aninhado. / It is expected that the consumer, in the moment when deciding which car he will buy, take in account the energetic efficiency of the model. However, many works show that the consumer undervalues the total spent that he will have with fuel in the moment he decides which model to buy. Cars are important externalities creators, and so, are frequently target of public policies, it is necessary to understand this behave of the consumer in order that the policies makers can design the most useful policy. The main objective of this work is to estimate the relative weight that the Brazilian consumer gives to the fuel economy in the moment of the car purchase choice, and verify if indeed, there is a undervaluation of the weight of the fuel spending in the Brazilian new car market. To try to answer this question will be used two different methodologies. The first one is a hedonic prices regression, and the second a nested demand model.
17

The role of thermoelectric generator in the efficient operation of vehicles

Lan, Song January 2018 (has links)
In the face of the internationally tightened requirements and regulations for CO2 emissions from the transportation sector, waste heat recovery using a thermoelectric generator (TEG) has become the most significant research interest. A vehicular TEG, converting otherwise wasted thermal energy from engines to electricity directly for use in the vehicle systems, is a promising approach for vehicle original equipment manufacturers (OEMs) to reduce fuel consumption and lower CO2 emissions. This thesis aims to explore the main challenges to be faced in the commercialization of TEGs. Based on a review of the literature, four research gaps have been identified, which are respectively: * Translating the material improvements into TEG Performance, * Transient behaviors of vehicular TEGs under driving cycles, * Fuel saving percentage and cost-benefit estimation of TEG, * Bidirectional characteristic of TEM and bifunctional vehicular TEG. To directly address these research gaps, a quasi-static TEM model, a dynamic TEG model, a semi-empirical vehicular TEG model, and a dual-model TEM model have been respectively developed and validated through experiments on both TEM test rigs and TEG engine test benches. These developed models are used as tools to investigate the performance of TEG, parameters sensitivity, and integration effects. Model-based TEG control, TEG cost benefit ratio and feasibility of a bifunctional TEG are also explored based on the developed models. The simulation results show that TEG power generation is highly sensitive to the heat transfer coefficient of hot side heat exchanger and thermal contact resistance. The TEG installation position is identified as the most important integration effect. It has been found by the simulation result that the fuel saving with TEG installed upstream of the three-way catalyst (TWC) is 50% higher than the fuel saving with TEG installed downstream of the TWC. The fuel saving percentage for a skutterudite vehicular TEG, which can generate around 400-600W in constant speed 120km/h, is 0.5-3.6% depending on the integration position in the exhaust line. A 3-minute faster warm-up effect of engine oil can be obtained when the bifunctional TEG works in engine warm-up mode with electrical current applied.
18

Mild Hybrid System in Combination with Waste Heat Recovery for Commercial Vehicles

Namakian, Mohsen January 2013 (has links)
Performance of two different waste heat recovery systems (one based on Rankine cycle and the other one using thermoelectricity) combined with non-hybrid, mild-hybrid and full hybrid systems are investigated. The vehicle under investigation was a 440hp Scania truck, loaded by 40 tons. Input data included logged data from a long haulage drive test in Sweden.All systems (waste heat recovery as well as hybrid) are implemented and simulated in Matlab/Simulink. Almost all systems are modeled using measured data or performance curves provided by one manufacturer. For Rankine system results from another investigation were used.Regardless of practical issues in implementing systems, reduction in fuel consumption for six different combination of waste heat recovery systems and hybrid systems with different degrees of hybridization are calculated. In general Rankine cycle shows a better performance. However, due to improvements achieved in laboratories, thermoelectricity could also be an option in future.This study focuses on “system” point of view and therefore high precision calculations is not included. However it can be useful in making decisions for further investigations.
19

Simulation of a parallel hydraulic hybrid refuse truck

Anderson, Garrett Lance 20 February 2012 (has links)
A rear loading refuse truck was simulated with a conventional and hydraulic hybrid configuration. Models for the hydraulic hybrid components were developed to simulate the system. A control algorithm was developed using a stochastic dynamic programming approach. The results did not match those that are advertised by the commercially available systems, but reasons for this deviation are discussed. The predicted improvement in fuel economy ranged from 1% to 15% depending on variance in drive cycle and vehicle weight. A brief analysis of the cost of the hybrid system was also conducted based on an estimated drive cycle. This analysis showed that, at current fuel prices of about $4.00/gallon, the system may not make financial sense for a 10 year period of ownership. / text
20

Estimativa da disposição a pagar por eficiência energética no mercado de carros novos no Brasil / Estimation of the willingness to pay for energy efficiency in the new car market in Brazil

Arthur de Souza Godeli 09 June 2017 (has links)
É esperado que o consumidor, no momento de decidir qual carro ele irá adquirir, leve em conta, entre diversos outros fatores, a eficiência energética do modelo. Contudo, diversos trabalhos apontam que o consumidor subvaloriza o gasto total que terá com combustível no momento que decide qual modelo de carro irá comprar. Como carros são grandes produtores de externalidades, e por isso, frequentemente são objetos de política pública, é necessário entender esse comportamento do consumidor para que os formuladores o possam levar em conta no momento de fazer as políticas públicas. O objetivo principal desse trabalho ´e estimar o peso relativo que o consumidor brasileiro dá à economia de combustível no momento da escolha da compra do carro, e verificar se, de fato, há uma subvalorização da importância do gasto com combustível no mercado de carros novos no Brasil. Para tentar responder a pergunta proposta serão utilizados duas metodologias distintas. A primeira será uma regressão de preços hedônicos, e a segunda um modelo de demanda aninhado. / It is expected that the consumer, in the moment when deciding which car he will buy, take in account the energetic efficiency of the model. However, many works show that the consumer undervalues the total spent that he will have with fuel in the moment he decides which model to buy. Cars are important externalities creators, and so, are frequently target of public policies, it is necessary to understand this behave of the consumer in order that the policies makers can design the most useful policy. The main objective of this work is to estimate the relative weight that the Brazilian consumer gives to the fuel economy in the moment of the car purchase choice, and verify if indeed, there is a undervaluation of the weight of the fuel spending in the Brazilian new car market. To try to answer this question will be used two different methodologies. The first one is a hedonic prices regression, and the second a nested demand model.

Page generated in 0.068 seconds