Spelling suggestions: "subject:"fully convolutional betworks"" "subject:"fully convolutional conetworks""
1 |
Real-time 3D Semantic Segmentation of Timber Loads with Convolutional Neural NetworksSällqvist, Jessica January 2018 (has links)
Volume measurements of timber loads is done in conjunction with timber trade. When dealing with goods of major economic values such as these, it is important to achieve an impartial and fair assessment when determining price-based volumes. With the help of Saab’s missile targeting technology, CIND AB develops products for digital volume measurement of timber loads. Currently there is a system in operation that automatically reconstructs timber trucks in motion to create measurable images of them. Future iterations of the system is expected to fully automate the scaling by generating a volumetric representation of the timber and calculate its external gross volume. The first challenge towards this development is to separate the timber load from the truck. This thesis aims to evaluate and implement appropriate method for semantic pixel-wise segmentation of timber loads in real time. Image segmentation is a classic but difficult problem in computer vision. To achieve greater robustness, it is therefore important to carefully study and make use of the conditions given by the existing system. Variations in timber type, truck type and packing together create unique combinations that the system must be able to handle. The system must work around the clock in different weather conditions while maintaining high precision and performance.
|
2 |
[en] MANY-TO-MANY FULLY CONVOLUTIONAL RECURRENT NETWORKS FOR MULTITEMPORAL CROP RECOGNITION USING SAR IMAGE SEQUENCES / [pt] RECONHECIMENTO DE CULTURAS AGRÍCOLAS UTILIZANDO REDES RECORRENTES A PARTIR DE SEQUÊNCIAS DE IMAGENS SARJORGE ANDRES CHAMORRO MARTINEZ 30 April 2020 (has links)
[pt] Este trabalho propõe e avalia arquiteturas profundas para o reconhecimento de culturas agrícolas a partir de seqüências de imagens multitemporais de sensoriamento remoto. Essas arquiteturas combinam a capacidade de modelar contexto espacial prórpia de redes totalmente convolucionais com a capacidade de modelr o contexto temporal de redes recorrentes para a previsão prever culturas agrícolas em cada data de uma seqüência de imagens multitemporais. O desempenho destes métodos é avaliado em dois conjuntos de dados públicos. Ambas as áreas apresentam alta dinâmica espaçotemporal devido ao clima tropical/subtropical e a práticas agrícolas locais, como a rotação de culturas. Nos experimentos verificou-se que as arquiteturas
propostas superaram os métodos recentes baseados em redes recorrentes em termos de Overall Accuracy (OA) e F1-score médio por classe. / [en] This work proposes and evaluates deep learning architectures for multi-date agricultural crop recognition from remote sensing image sequences. These architectures combine the spatial modelling capabilities of fully convolutional networks and the sequential modelling capabilities of recurrent networks into end-to-end architectures so-called fully convolutional recurrent networks, configured to predict crop type at multiple dates from a multitemporal image sequence. Their performance is assessed over two publicly available datasets. Both datasets present highly spatio-temporal dynamics due to their tropical/sub-tropical climate and local agricultural practices such as crop rotation. The experiments indicated that the proposed architectures outperformed state of the art methods based on recurrent networks in terms of Overall Accuracy (OA) and per-class average F1 score.
|
3 |
Generic instance segmentation for object-oriented bin-picking / Segmentation en instances génériques pour le dévracage orienté objetGrard, Matthieu 20 May 2019 (has links)
Le dévracage robotisé est une tâche industrielle en forte croissance visant à automatiser le déchargement par unité d’une pile d’instances d'objet en vrac pour faciliter des traitements ultérieurs tels que la formation de kits ou l’assemblage de composants. Cependant, le modèle explicite des objets est souvent indisponible dans de nombreux secteurs industriels, notamment alimentaire et automobile, et les instances d'objet peuvent présenter des variations intra-classe, par exemple en raison de déformations élastiques.Les techniques d’estimation de pose, qui nécessitent un modèle explicite et supposent des transformations rigides, ne sont donc pas applicables dans de tels contextes. L'approche alternative consiste à détecter des prises sans notion explicite d’objet, ce qui pénalise fortement le dévracage lorsque l’enchevêtrement des instances est important. Ces approches s’appuient aussi sur une reconstruction multi-vues de la scène, difficile par exemple avec des emballages alimentaires brillants ou transparents, ou réduisant de manière critique le temps de cycle restant dans le cadre d’applications à haute cadence.En collaboration avec Siléane, une entreprise française de robotique industrielle, l’objectif de ce travail est donc de développer une solution par apprentissage pour la localisation des instances les plus prenables d’un vrac à partir d’une seule image, en boucle ouverte, sans modèles d'objet explicites. Dans le contexte du dévracage industriel, notre contribution est double.Premièrement, nous proposons un nouveau réseau pleinement convolutionnel (FCN) pour délinéer les instances et inférer un ordre spatial à leurs frontières. En effet, les méthodes état de l'art pour cette tâche reposent sur deux flux indépendants, respectivement pour les frontières et les occultations, alors que les occultations sont souvent sources de frontières. Plus précisément, l'approche courante, qui consiste à isoler les instances dans des boîtes avant de détecter les frontières et les occultations, se montre inadaptée aux scénarios de dévracage dans la mesure où une région rectangulaire inclut souvent plusieurs instances. A contrario, notre architecture sans détection préalable de régions détecte finement les frontières entre instances, ainsi que le bord occultant correspondant, à partir d'une représentation unifiée de la scène.Deuxièmement, comme les FCNs nécessitent de grands ensembles d'apprentissage qui ne sont pas disponibles dans les applications de dévracage, nous proposons une procédure par simulation pour générer des images d'apprentissage à partir de moteurs physique et de rendu. Plus précisément, des vracs d'instances sont simulés et rendus avec les annotations correspondantes à partir d'ensembles d'images de texture et de maillages auxquels sont appliquées de multiples déformations aléatoires. Nous montrons que les données synthétiques proposées sont vraisemblables pour des applications réelles au sens où elles permettent l'apprentissage de représentations profondes transférables à des données réelles. A travers de nombreuses expériences sur une maquette réelle avec robot, notre réseau entraîné sur données synthétiques surpasse la méthode industrielle de référence, tout en obtenant des performances temps réel. L'approche proposée établit ainsi une nouvelle référence pour le dévracage orienté-objet sans modèle d'objet explicite. / Referred to as robotic random bin-picking, a fast-expanding industrial task consists in robotizing the unloading of many object instances piled up in bulk, one at a time, for further processing such as kitting or part assembling. However, explicit object models are not always available in many bin-picking applications, especially in the food and automotive industries. Furthermore, object instances are often subject to intra-class variations, for example due to elastic deformations.Object pose estimation techniques, which require an explicit model and assume rigid transformations, are therefore not suitable in such contexts. The alternative approach, which consists in detecting grasps without an explicit notion of object, proves hardly efficient when the object geometry makes bulk instances prone to occlusion and entanglement. These approaches also typically rely on a multi-view scene reconstruction that may be unfeasible due to transparent and shiny textures, or that reduces critically the time frame for image processing in high-throughput robotic applications.In collaboration with Siléane, a French company in industrial robotics, we thus aim at developing a learning-based solution for localizing the most affordable instance of a pile from a single image, in open loop, without explicit object models. In the context of industrial bin-picking, our contribution is two-fold.First, we propose a novel fully convolutional network (FCN) for jointly delineating instances and inferring the spatial layout at their boundaries. Indeed, the state-of-the-art methods for such a task rely on two independent streams for boundaries and occlusions respectively, whereas occlusions often cause boundaries. Specifically, the mainstream approach, which consists in isolating instances in boxes before detecting boundaries and occlusions, fails in bin-picking scenarios as a rectangle region often includes several instances. By contrast, our box proposal-free architecture recovers fine instance boundaries, augmented with their occluding side, from a unified scene representation. As a result, the proposed network outperforms the two-stream baselines on synthetic data and public real-world datasets.Second, as FCNs require large training datasets that are not available in bin-picking applications, we propose a simulation-based pipeline for generating training images using physics and rendering engines. Specifically, piles of instances are simulated and rendered with their ground-truth annotations from sets of texture images and meshes to which multiple random deformations are applied. We show that the proposed synthetic data is plausible for real-world applications in the sense that it enables the learning of deep representations transferable to real data. Through extensive experiments on a real-world robotic setup, our synthetically trained network outperforms the industrial baseline while achieving real-time performances. The proposed approach thus establishes a new baseline for model-free object-oriented bin-picking.
|
4 |
Deep Learning Studies for Vision-based Condition Assessment and Attribute Estimation of Civil Infrastructure SystemsFu-Chen Chen (7484339) 14 January 2021 (has links)
Structural health monitoring and building assessment are crucial to acquire structures’ states and maintain their conditions. Besides human-labor surveys that are subjective, time-consuming, and expensive, autonomous image and video analysis is a faster, more efficient, and non-destructive way. This thesis focuses on crack detection from videos, crack segmentation from images, and building assessment from street view images. For crack detection from videos, three approaches are proposed based on local binary pattern (LBP) and support vector machine (SVM), deep convolution neural network (DCNN), and fully-connected network (FCN). A parametric Naïve Bayes data fusion scheme is introduced that registers video frames in a spatiotemporal coordinate system and fuses information based on Bayesian probability to increase detection precision. For crack segmentation from images, the rotation-invariant property of crack is utilized to enhance the segmentation accuracy. The architectures of several approximately rotation-invariant DCNNs are discussed and compared using several crack datasets. For building assessment from street view images, a framework of multiple DCNNs is proposed to detect buildings and predict their attributes that are crucial for flood risk estimation, including founding heights, foundation types (pier, slab, mobile home, or others), building types (commercial, residential, or mobile home), and building stories. A feature fusion scheme is proposed that combines image feature with meta information to improve the predictions, and a task relation encoding network (TREncNet) is introduced that encodes task relations as network connections to enhance multi-task learning.
|
5 |
[pt] APLICAÇÃO DE REDES TOTALMENTE CONVOLUCIONAIS PARA A SEGMENTAÇÃO SEMÂNTICA DE IMAGENS DE DRONES, AÉREAS E ORBITAIS / [en] APPLYING FULLY CONVOLUTIONAL ARCHITECTURES FOR THE SEMANTIC SEGMENTATION OF UAV, AIRBORN, AND SATELLITE REMOTE SENSING IMAGERY14 December 2020 (has links)
[pt] A crescente disponibilidade de dados de sensoriamento remoto vem criando novas oportunidades e desafios em aplicações de monitoramento de processos naturais e antropogénicos em escala global. Nos últimos anos, as técnicas de aprendizado profundo tornaram-se o estado da arte na análise de dados
de sensoriamento remoto devido sobretudo à sua capacidade de aprender automaticamente atributos discriminativos a partir de grandes volumes de dados. Um dos problemas chave em análise de imagens é a segmentação semântica, também conhecida como rotulação de pixels. Trata-se de atribuir uma classe a cada sítio de imagem. As chamadas redes totalmente convolucionais de prestam a esta função. Os anos recentes têm testemunhado inúmeras propostas de arquiteturas de redes totalmente convolucionais que
têm sido adaptadas para a segmentação de dados de observação da Terra. O presente trabalho avalias cinco arquiteturas de redes totalmente convolucionais que representam o estado da arte em segmentação semântica de imagens de sensoriamento remoto. A avaliação considera dados provenientes de diferentes plataformas: veículos aéreos não tripulados, aeronaves e satélites. Cada um destes dados refere-se a aplicações diferentes: segmentação de espécie arbórea, segmentação de telhados e desmatamento. O desempenho das redes é avaliado experimentalmente em termos de acurácia e da carga computacional associada. O estudo também avalia os benefícios da utilização do Campos Aleatórios Condicionais (CRF) como etapa de pósprocessamento para melhorar a acurácia dos mapas de segmentação. / [en] The increasing availability of remote sensing data has created new opportunities and challenges for monitoring natural and anthropogenic processes on a global scale. In recent years, deep learning techniques have become state of the art in remote sensing data analysis, mainly due to their ability
to learn discriminative attributes from large volumes of data automatically. One of the critical problems in image analysis is the semantic segmentation, also known as pixel labeling. It involves assigning a class to each image site. The so-called fully convolutional networks are specifically designed for this task. Recent years have witnessed numerous proposals for fully convolutional network architectures that have been adapted for the segmentation of Earth observation data. The present work evaluates five fully convolutional
network architectures that represent the state of the art in semantic segmentation of remote sensing images. The assessment considers data from different platforms: unmanned aerial vehicles, airplanes, and satellites. Three applications are addressed: segmentation of tree species, segmentation of roofs, and deforestation. The performance of the networks is evaluated experimentally in terms of accuracy and the associated computational load. The study also assesses the benefits of using Conditional Random Fields
(CRF) as a post-processing step to improve the accuracy of segmentation maps.
|
6 |
Building Information Extraction and Refinement from VHR Satellite Imagery using Deep Learning TechniquesBittner, Ksenia 26 March 2020 (has links)
Building information extraction and reconstruction from satellite images is an essential task for many applications related to 3D city modeling, planning, disaster management, navigation, and decision-making. Building information can be obtained and interpreted from several data, like terrestrial measurements, airplane surveys, and space-borne imagery. However, the latter acquisition method outperforms the others in terms of cost and worldwide coverage: Space-borne platforms can provide imagery of remote places, which are inaccessible to other missions, at any time. Because the manual interpretation of high-resolution satellite image is tedious and time consuming, its automatic analysis continues to be an intense field of research. At times however, it is difficult to understand complex scenes with dense placement of buildings, where parts of buildings may be occluded by vegetation or other surrounding constructions, making their extraction or reconstruction even more difficult. Incorporation of several data sources representing different modalities may facilitate the problem. The goal of this dissertation is to integrate multiple high-resolution remote sensing data sources for automatic satellite imagery interpretation with emphasis on building information extraction and refinement, which challenges are addressed in the following: Building footprint extraction from Very High-Resolution (VHR) satellite images is an important but highly challenging task, due to the large diversity of building appearances and relatively low spatial resolution of satellite data compared to airborne data. Many algorithms are built on spectral-based or appearance-based criteria from single or fused data sources, to perform the building footprint extraction. The input features for these algorithms are usually manually extracted, which limits their accuracy. Based on the advantages of recently developed Fully Convolutional Networks (FCNs), i.e., the automatic extraction of relevant features and dense classification of images, an end-to-end framework is proposed which effectively combines the spectral and height information from red, green, and blue (RGB), pan-chromatic (PAN), and normalized Digital Surface Model (nDSM) image data and automatically generates a full resolution binary building mask. The proposed architecture consists of three parallel networks merged at a late stage, which helps in propagating fine detailed information from earlier layers to higher levels, in order to produce an output with high-quality building outlines. The performance of the model is examined on new unseen data to demonstrate its generalization capacity.
The availability of detailed Digital Surface Models (DSMs) generated by dense matching and representing the elevation surface of the Earth can improve the analysis and interpretation of complex urban scenarios. The generation of DSMs from VHR optical stereo satellite imagery leads to high-resolution DSMs which often suffer from mismatches, missing values, or blunders, resulting in coarse building shape representation. To overcome these problems, a methodology based on conditional Generative Adversarial Network (cGAN) is developed for generating a good-quality Level of Detail (LoD) 2 like DSM with enhanced 3D object shapes directly from the low-quality photogrammetric half-meter resolution satellite DSM input. Various deep learning applications benefit from multi-task learning with multiple regression and classification objectives by taking advantage of the similarities between individual tasks. Therefore, an observation of such influences for important remote sensing applications such as realistic elevation model generation and roof type classification from stereo half-meter resolution satellite DSMs, is demonstrated in this work. Recently published deep learning architectures for both tasks are investigated and a new end-to-end cGAN-based network is developed, which combines different models that provide the best results for their individual tasks.
To benefit from information provided by multiple data sources, a different cGAN-based work-flow is proposed where the generative part consists of two encoders and a common decoder which blends the intensity and height information within one network for the DSM refinement task. The inputs to the introduced network are single-channel photogrammetric DSMs with continuous values and pan-chromatic half-meter resolution satellite images. Information fusion from different modalities helps in propagating fine details, completes inaccurate or missing 3D information about building forms, and improves the building boundaries, making them more rectilinear.
Lastly, additional comparison between the proposed methodologies for DSM enhancements is made to discuss and verify the most beneficial work-flow and applicability of the resulting DSMs for different remote sensing approaches.
|
Page generated in 0.0818 seconds