• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approaches to modelling functional time series with an application to electricity generation data

Jin, Zehui January 2018 (has links)
We study the half-hourly electricity generation by coal and by gas in the UK over a period of three years from 2012 to 2014. As a highly frequent time series, daily cycles along with seasonality and trend across days can be seen in the data for each fuel. Taylor (2003), Taylor et al. (2006), and Taylor (2008) studied time series of the similar features by introducing double seasonality into the methods for a single univariate time series. As we are interested in the continuous variation in the generation within a day, the half-hourly observations within a day are considered as a continuous function. In this way, a time series of half-hourly discrete observations is transformed into a time series of daily functions. The idea of a time series of functions can also seen in Shang (2013), Shang and Hyndman (2011) and Hyndman and Ullah (2007). We improve their methods in a few ways. Firstly, we identify the systematic effect due to the factors that take effect in a long term, such as weather and prices of fuels, and the intrinsic differences between the days of the week. The systematic effect is modeled and removed before we study the day-by-day random variation in the functions. Secondly, we extend functional principal component analysis (PCA), which was applied on one group of functions in Shang (2013), Shang and Hyndman (2011) and Hyndman and Ullah (2007), into partial common PCA, in order to consider the covariance structures of two groups of functions and their similarities. A test on the goodness of the approximation to the functions given by the common eigenfunctions is also proposed. The idea of bootstrapping residuals from the approximation seen in Shang (2014) is employed but is improved with non-overlapping blocks and moving blocks of residuals. Thirdly, we use a vector autoregressive (VAR) model, which is a multivariate approach, to model the scores on common eigenfunctions of a group such that the cross-correlation between the scores can be considered. We include Lasso penalties in the VAR model to select the significant covariates and refit the selection with ordinary least squares to reduce the bias. Our method is compared with the stepwise procedure by Pfaff (2007), and is proved to be less variable and more accurate on estimation and prediction. Finally, we propose the method to give the point forecasts of the daily functions. It is more complicated than the methods of Shang (2013), Shang and Hyndman (2011) and Hyndman and Ullah (2007) as the systematic effect needs to be included. An adjustment interval is also given along with a point forecast, which represents the range within which the true function might vary. Our methods to give the point forecast and the adjustment interval include the information updating after the training period, which is not considered in the classical predicting equations of VAR and GARCH seen in Tsay (2013) and Engle and Bollerslev (1986).
2

Essays in nonparametric econometrics and infinite dimensional mathematical statistics / Ensaios em econometria não-paramétrica e estatística matemática em dimensão infinita

Horta, Eduardo de Oliveira January 2015 (has links)
A presente Tese de Doutorado é composta de quatro artigos científicos em duas áreas distintas. Em Horta, Guerre e Fernandes (2015), o qual constitui o Capítulo 2 desta Tese, é proposto um estimador suavizado no contexto de modelos de regressão quantílica linear (Koenker e Basset, 1978). Uma representação de Bahadur-Kiefer uniforme é obtida, a qual apresenta uma ordem assintótica que domina aquela correspondente ao estimador clássico. Em seguida, prova-se que o viés associado à suavização é negligenciável, no sentido de que o termo de viés é equivalente, em primeira ordem, ao verdadeiro parâmetro. A taxa precisa de convergência é dada, a qual pode ser controlada uniformemente pela escolha do parâmetro de suavização. Em seguida, são estudadas propriedades de segunda ordem do estimador proposto, em termos do seu erro quadrático médio assintótico, e mostra-se que o estimador suavizado apresenta uma melhoria em relação ao usual. Como corolário, tem-se que o estimador é assintoticamente normal e consistente à ordem p n. Em seguida, é proposto um estimador consistente para a matriz de covariância assintótica, o qual não depende de estimação de parâmetros auxiliares e a partir do qual pode-se obter diretamente intervalos de confiança assintóticos. A qualidade do método proposto é por fim ilustrada em um estudo de simulação. Os artigos Horta e Ziegelmann (2015a, 2015b, 2015c) se originam de um ímpeto inicial destinado a generalizar os resultados de Bathia et al. (2010). Em Horta e Ziegelmann (2015a), Capítulo 3 da presente Tese, é investigada a questão de existência de certos processos estocásticos, ditos processos conjugados, os quais são conduzidos por um segundo processo cujo espaço de estados tem como elementos medidas de probabilidade. Através dos conceitos de coerência e compatibilidade, obtémse uma resposta afirmativa à questão anterior. Baseado nas noções de medida aleatória (Kallenberg, 1973) e desintegração (Chang e Pollard, 1997; Pollard, 2002), é proposto um método geral para construção de processos conjugados. A teoria permite um rico conjunto de exemplos, e inclui uma classe de modelos de mudança de regime. Em Horta e Ziegelmann (2015b), Capítulo 4 desta Tese, é proposto – em relação com a construção obtida em Horta e Ziegelmann (2015a) – o conceito de processo fracamente conjugado: um processo estocástico real a tempo contínuo, conduzido por uma sequência de funções de distribuição aleatórias, ambos conectados por uma condição de compatibilidade a qual impõe que aspectos da distribuição do primeiro processo são divisíveis em uma quantidade enumerável de ciclos, dentro dos quais este tem como marginais, precisamente, o segundo processo. Em seguida, mostra-se que a metodologia de Bathia et al. (2010) pode ser aplicada para se estudar a estrutura de dependência de processos fracamente conjugados, e com isso obtém-se resultados de consistência à ordem p n para os estimadores que surgem naturalmente na teoria. Adicionalmente, a metodologia é ilustrada através de uma implementação a dados financeiros. Especificamente, o método proposto permite que características da dinâmica das distribuições de processos de retornos sejam traduzidas em termos de um processo escalar latente, a partir do qual podem ser obtidas previsões de quantidades associadas a essas distribuições. Em Horta e Ziegelmann (2015c), Capítulo 5 da presente Tese, são obtidos resultados de consistência à ordem p n em relação à estimação de representações espectrais de operadores de autocovariância de séries de tempo Hilbertianas estacionárias, em um contexto de medições imperfeitas. Os resultados são uma generalização do método desenvolvido em Bathia et al. (2010), e baseiam-se no importante fato de que elementos aleatórios em um espaço de Hilbert separável são quase certamente ortogonais ao núcleo de seu respectivo operador de covariância. É dada uma prova direta deste fato. / The present Thesis is composed of 4 research papers in two distinct areas. In Horta, Guerre, and Fernandes (2015), which constitutes Chapter 2 of this Thesis, we propose a smoothed estimator in the framework of the linear quantile regression model of Koenker and Bassett (1978). A uniform Bahadur-Kiefer representation is provided, with an asymptotic rate which dominates the standard quantile regression estimator. Next, we prove that the bias introduced by smoothing is negligible in the sense that the bias term is firstorder equivalent to the true parameter. A precise rate of convergence, which is controlled uniformly by choice of bandwidth, is provided. We then study second-order properties of the smoothed estimator, in terms of its asymptotic mean squared error, and show that it improves on the usual estimator when an optimal bandwidth is used. As corollaries to the above, one obtains that the proposed estimator is p n-consistent and asymptotically normal. Next, we provide a consistent estimator of the asymptotic covariance matrix which does not depend on ancillary estimation of nuisance parameters, and from which asymptotic confidence intervals are straightforwardly computable. The quality of the method is then illustrated through a simulation study. The research papers Horta and Ziegelmann (2015a;b;c) are all related in the sense that they stem from an initial impetus of generalizing the results in Bathia et al. (2010). In Horta and Ziegelmann (2015a), Chapter 3 of this Thesis, we address the question of existence of certain stochastic processes, which we call conjugate processes, driven by a second, measure-valued stochastic process. We investigate primitive conditions ensuring existence and, through the concepts of coherence and compatibility, obtain an affirmative answer to the former question. Relying on the notions of random measure (Kallenberg (1973)) and disintegration (Chang and Pollard (1997), Pollard (2002)), we provide a general approach for construction of conjugate processes. The theory allows for a rich set of examples, and includes a class of Regime Switching models. In Horta and Ziegelmann (2015b), Chapter 4 of the present Thesis, we introduce, in relation with the construction in Horta and Ziegelmann (2015a), the concept of a weakly conjugate process: a continuous time, real valued stochastic process driven by a sequence of random distribution functions, the connection between the two being given by a compatibility condition which says that distributional aspects of the former process are divisible into countably many cycles during which it has precisely the latter as marginal distributions. We then show that the methodology of Bathia et al. (2010) can be applied to study the dependence structure of weakly conjugate processes, and therewith provide p n-consistency results for the natural estimators appearing in the theory. Additionally, we illustrate the methodology through an implementation to financial data. Specifically, our method permits us to translate the dynamic character of the distribution of an asset returns process into the dynamics of a latent scalar process, which in turn allows us to generate forecasts of quantities associated to distributional aspects of the returns process. In Horta and Ziegelmann (2015c), Chapter 5 of this Thesis, we obtain p n-consistency results regarding estimation of the spectral representation of the zero-lag autocovariance operator of stationary Hilbertian time series, in a setting with imperfect measurements. This is a generalization of the method developed in Bathia et al. (2010). The generalization relies on the important property that centered random elements of strong second order in a separable Hilbert space lie almost surely in the closed linear span of the associated covariance operator. We provide a straightforward proof to this fact.
3

Essays in nonparametric econometrics and infinite dimensional mathematical statistics / Ensaios em econometria não-paramétrica e estatística matemática em dimensão infinita

Horta, Eduardo de Oliveira January 2015 (has links)
A presente Tese de Doutorado é composta de quatro artigos científicos em duas áreas distintas. Em Horta, Guerre e Fernandes (2015), o qual constitui o Capítulo 2 desta Tese, é proposto um estimador suavizado no contexto de modelos de regressão quantílica linear (Koenker e Basset, 1978). Uma representação de Bahadur-Kiefer uniforme é obtida, a qual apresenta uma ordem assintótica que domina aquela correspondente ao estimador clássico. Em seguida, prova-se que o viés associado à suavização é negligenciável, no sentido de que o termo de viés é equivalente, em primeira ordem, ao verdadeiro parâmetro. A taxa precisa de convergência é dada, a qual pode ser controlada uniformemente pela escolha do parâmetro de suavização. Em seguida, são estudadas propriedades de segunda ordem do estimador proposto, em termos do seu erro quadrático médio assintótico, e mostra-se que o estimador suavizado apresenta uma melhoria em relação ao usual. Como corolário, tem-se que o estimador é assintoticamente normal e consistente à ordem p n. Em seguida, é proposto um estimador consistente para a matriz de covariância assintótica, o qual não depende de estimação de parâmetros auxiliares e a partir do qual pode-se obter diretamente intervalos de confiança assintóticos. A qualidade do método proposto é por fim ilustrada em um estudo de simulação. Os artigos Horta e Ziegelmann (2015a, 2015b, 2015c) se originam de um ímpeto inicial destinado a generalizar os resultados de Bathia et al. (2010). Em Horta e Ziegelmann (2015a), Capítulo 3 da presente Tese, é investigada a questão de existência de certos processos estocásticos, ditos processos conjugados, os quais são conduzidos por um segundo processo cujo espaço de estados tem como elementos medidas de probabilidade. Através dos conceitos de coerência e compatibilidade, obtémse uma resposta afirmativa à questão anterior. Baseado nas noções de medida aleatória (Kallenberg, 1973) e desintegração (Chang e Pollard, 1997; Pollard, 2002), é proposto um método geral para construção de processos conjugados. A teoria permite um rico conjunto de exemplos, e inclui uma classe de modelos de mudança de regime. Em Horta e Ziegelmann (2015b), Capítulo 4 desta Tese, é proposto – em relação com a construção obtida em Horta e Ziegelmann (2015a) – o conceito de processo fracamente conjugado: um processo estocástico real a tempo contínuo, conduzido por uma sequência de funções de distribuição aleatórias, ambos conectados por uma condição de compatibilidade a qual impõe que aspectos da distribuição do primeiro processo são divisíveis em uma quantidade enumerável de ciclos, dentro dos quais este tem como marginais, precisamente, o segundo processo. Em seguida, mostra-se que a metodologia de Bathia et al. (2010) pode ser aplicada para se estudar a estrutura de dependência de processos fracamente conjugados, e com isso obtém-se resultados de consistência à ordem p n para os estimadores que surgem naturalmente na teoria. Adicionalmente, a metodologia é ilustrada através de uma implementação a dados financeiros. Especificamente, o método proposto permite que características da dinâmica das distribuições de processos de retornos sejam traduzidas em termos de um processo escalar latente, a partir do qual podem ser obtidas previsões de quantidades associadas a essas distribuições. Em Horta e Ziegelmann (2015c), Capítulo 5 da presente Tese, são obtidos resultados de consistência à ordem p n em relação à estimação de representações espectrais de operadores de autocovariância de séries de tempo Hilbertianas estacionárias, em um contexto de medições imperfeitas. Os resultados são uma generalização do método desenvolvido em Bathia et al. (2010), e baseiam-se no importante fato de que elementos aleatórios em um espaço de Hilbert separável são quase certamente ortogonais ao núcleo de seu respectivo operador de covariância. É dada uma prova direta deste fato. / The present Thesis is composed of 4 research papers in two distinct areas. In Horta, Guerre, and Fernandes (2015), which constitutes Chapter 2 of this Thesis, we propose a smoothed estimator in the framework of the linear quantile regression model of Koenker and Bassett (1978). A uniform Bahadur-Kiefer representation is provided, with an asymptotic rate which dominates the standard quantile regression estimator. Next, we prove that the bias introduced by smoothing is negligible in the sense that the bias term is firstorder equivalent to the true parameter. A precise rate of convergence, which is controlled uniformly by choice of bandwidth, is provided. We then study second-order properties of the smoothed estimator, in terms of its asymptotic mean squared error, and show that it improves on the usual estimator when an optimal bandwidth is used. As corollaries to the above, one obtains that the proposed estimator is p n-consistent and asymptotically normal. Next, we provide a consistent estimator of the asymptotic covariance matrix which does not depend on ancillary estimation of nuisance parameters, and from which asymptotic confidence intervals are straightforwardly computable. The quality of the method is then illustrated through a simulation study. The research papers Horta and Ziegelmann (2015a;b;c) are all related in the sense that they stem from an initial impetus of generalizing the results in Bathia et al. (2010). In Horta and Ziegelmann (2015a), Chapter 3 of this Thesis, we address the question of existence of certain stochastic processes, which we call conjugate processes, driven by a second, measure-valued stochastic process. We investigate primitive conditions ensuring existence and, through the concepts of coherence and compatibility, obtain an affirmative answer to the former question. Relying on the notions of random measure (Kallenberg (1973)) and disintegration (Chang and Pollard (1997), Pollard (2002)), we provide a general approach for construction of conjugate processes. The theory allows for a rich set of examples, and includes a class of Regime Switching models. In Horta and Ziegelmann (2015b), Chapter 4 of the present Thesis, we introduce, in relation with the construction in Horta and Ziegelmann (2015a), the concept of a weakly conjugate process: a continuous time, real valued stochastic process driven by a sequence of random distribution functions, the connection between the two being given by a compatibility condition which says that distributional aspects of the former process are divisible into countably many cycles during which it has precisely the latter as marginal distributions. We then show that the methodology of Bathia et al. (2010) can be applied to study the dependence structure of weakly conjugate processes, and therewith provide p n-consistency results for the natural estimators appearing in the theory. Additionally, we illustrate the methodology through an implementation to financial data. Specifically, our method permits us to translate the dynamic character of the distribution of an asset returns process into the dynamics of a latent scalar process, which in turn allows us to generate forecasts of quantities associated to distributional aspects of the returns process. In Horta and Ziegelmann (2015c), Chapter 5 of this Thesis, we obtain p n-consistency results regarding estimation of the spectral representation of the zero-lag autocovariance operator of stationary Hilbertian time series, in a setting with imperfect measurements. This is a generalization of the method developed in Bathia et al. (2010). The generalization relies on the important property that centered random elements of strong second order in a separable Hilbert space lie almost surely in the closed linear span of the associated covariance operator. We provide a straightforward proof to this fact.
4

Essays in nonparametric econometrics and infinite dimensional mathematical statistics / Ensaios em econometria não-paramétrica e estatística matemática em dimensão infinita

Horta, Eduardo de Oliveira January 2015 (has links)
A presente Tese de Doutorado é composta de quatro artigos científicos em duas áreas distintas. Em Horta, Guerre e Fernandes (2015), o qual constitui o Capítulo 2 desta Tese, é proposto um estimador suavizado no contexto de modelos de regressão quantílica linear (Koenker e Basset, 1978). Uma representação de Bahadur-Kiefer uniforme é obtida, a qual apresenta uma ordem assintótica que domina aquela correspondente ao estimador clássico. Em seguida, prova-se que o viés associado à suavização é negligenciável, no sentido de que o termo de viés é equivalente, em primeira ordem, ao verdadeiro parâmetro. A taxa precisa de convergência é dada, a qual pode ser controlada uniformemente pela escolha do parâmetro de suavização. Em seguida, são estudadas propriedades de segunda ordem do estimador proposto, em termos do seu erro quadrático médio assintótico, e mostra-se que o estimador suavizado apresenta uma melhoria em relação ao usual. Como corolário, tem-se que o estimador é assintoticamente normal e consistente à ordem p n. Em seguida, é proposto um estimador consistente para a matriz de covariância assintótica, o qual não depende de estimação de parâmetros auxiliares e a partir do qual pode-se obter diretamente intervalos de confiança assintóticos. A qualidade do método proposto é por fim ilustrada em um estudo de simulação. Os artigos Horta e Ziegelmann (2015a, 2015b, 2015c) se originam de um ímpeto inicial destinado a generalizar os resultados de Bathia et al. (2010). Em Horta e Ziegelmann (2015a), Capítulo 3 da presente Tese, é investigada a questão de existência de certos processos estocásticos, ditos processos conjugados, os quais são conduzidos por um segundo processo cujo espaço de estados tem como elementos medidas de probabilidade. Através dos conceitos de coerência e compatibilidade, obtémse uma resposta afirmativa à questão anterior. Baseado nas noções de medida aleatória (Kallenberg, 1973) e desintegração (Chang e Pollard, 1997; Pollard, 2002), é proposto um método geral para construção de processos conjugados. A teoria permite um rico conjunto de exemplos, e inclui uma classe de modelos de mudança de regime. Em Horta e Ziegelmann (2015b), Capítulo 4 desta Tese, é proposto – em relação com a construção obtida em Horta e Ziegelmann (2015a) – o conceito de processo fracamente conjugado: um processo estocástico real a tempo contínuo, conduzido por uma sequência de funções de distribuição aleatórias, ambos conectados por uma condição de compatibilidade a qual impõe que aspectos da distribuição do primeiro processo são divisíveis em uma quantidade enumerável de ciclos, dentro dos quais este tem como marginais, precisamente, o segundo processo. Em seguida, mostra-se que a metodologia de Bathia et al. (2010) pode ser aplicada para se estudar a estrutura de dependência de processos fracamente conjugados, e com isso obtém-se resultados de consistência à ordem p n para os estimadores que surgem naturalmente na teoria. Adicionalmente, a metodologia é ilustrada através de uma implementação a dados financeiros. Especificamente, o método proposto permite que características da dinâmica das distribuições de processos de retornos sejam traduzidas em termos de um processo escalar latente, a partir do qual podem ser obtidas previsões de quantidades associadas a essas distribuições. Em Horta e Ziegelmann (2015c), Capítulo 5 da presente Tese, são obtidos resultados de consistência à ordem p n em relação à estimação de representações espectrais de operadores de autocovariância de séries de tempo Hilbertianas estacionárias, em um contexto de medições imperfeitas. Os resultados são uma generalização do método desenvolvido em Bathia et al. (2010), e baseiam-se no importante fato de que elementos aleatórios em um espaço de Hilbert separável são quase certamente ortogonais ao núcleo de seu respectivo operador de covariância. É dada uma prova direta deste fato. / The present Thesis is composed of 4 research papers in two distinct areas. In Horta, Guerre, and Fernandes (2015), which constitutes Chapter 2 of this Thesis, we propose a smoothed estimator in the framework of the linear quantile regression model of Koenker and Bassett (1978). A uniform Bahadur-Kiefer representation is provided, with an asymptotic rate which dominates the standard quantile regression estimator. Next, we prove that the bias introduced by smoothing is negligible in the sense that the bias term is firstorder equivalent to the true parameter. A precise rate of convergence, which is controlled uniformly by choice of bandwidth, is provided. We then study second-order properties of the smoothed estimator, in terms of its asymptotic mean squared error, and show that it improves on the usual estimator when an optimal bandwidth is used. As corollaries to the above, one obtains that the proposed estimator is p n-consistent and asymptotically normal. Next, we provide a consistent estimator of the asymptotic covariance matrix which does not depend on ancillary estimation of nuisance parameters, and from which asymptotic confidence intervals are straightforwardly computable. The quality of the method is then illustrated through a simulation study. The research papers Horta and Ziegelmann (2015a;b;c) are all related in the sense that they stem from an initial impetus of generalizing the results in Bathia et al. (2010). In Horta and Ziegelmann (2015a), Chapter 3 of this Thesis, we address the question of existence of certain stochastic processes, which we call conjugate processes, driven by a second, measure-valued stochastic process. We investigate primitive conditions ensuring existence and, through the concepts of coherence and compatibility, obtain an affirmative answer to the former question. Relying on the notions of random measure (Kallenberg (1973)) and disintegration (Chang and Pollard (1997), Pollard (2002)), we provide a general approach for construction of conjugate processes. The theory allows for a rich set of examples, and includes a class of Regime Switching models. In Horta and Ziegelmann (2015b), Chapter 4 of the present Thesis, we introduce, in relation with the construction in Horta and Ziegelmann (2015a), the concept of a weakly conjugate process: a continuous time, real valued stochastic process driven by a sequence of random distribution functions, the connection between the two being given by a compatibility condition which says that distributional aspects of the former process are divisible into countably many cycles during which it has precisely the latter as marginal distributions. We then show that the methodology of Bathia et al. (2010) can be applied to study the dependence structure of weakly conjugate processes, and therewith provide p n-consistency results for the natural estimators appearing in the theory. Additionally, we illustrate the methodology through an implementation to financial data. Specifically, our method permits us to translate the dynamic character of the distribution of an asset returns process into the dynamics of a latent scalar process, which in turn allows us to generate forecasts of quantities associated to distributional aspects of the returns process. In Horta and Ziegelmann (2015c), Chapter 5 of this Thesis, we obtain p n-consistency results regarding estimation of the spectral representation of the zero-lag autocovariance operator of stationary Hilbertian time series, in a setting with imperfect measurements. This is a generalization of the method developed in Bathia et al. (2010). The generalization relies on the important property that centered random elements of strong second order in a separable Hilbert space lie almost surely in the closed linear span of the associated covariance operator. We provide a straightforward proof to this fact.
5

Modeling financial volatility : A functional approach with applications to Swedish limit order book data

Elezovic, Suad January 2009 (has links)
<!-- /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:SV;} @page Section1 {size:612.0pt 792.0pt; margin:72.0pt 90.0pt 72.0pt 90.0pt; mso-header-margin:35.4pt; mso-footer-margin:35.4pt; mso-paper-source:0;} div.Section1 {page:Section1;} --> This thesis is designed to offer an approach to modeling volatility in the Swedish limit order market. Realized quadratic variation is used as an estimator of the integrated variance, which is a measure of the variability of a stochastic process in continuous time. Moreover, a functional time series model for the realized quadratic variation is introduced. A two-step estimation procedure for such a model is then proposed. Some properties of the proposed two-step estimator are discussed and illustrated through an application to high-frequency financial data and simulated experiments. In Paper I, the concept of realized quadratic variation, obtained from the bid and ask curves, is presented. In particular, an application to the Swedish limit order book data is performed using signature plots to determine an optimal sampling frequency for the computations. The paper is the first study that introduces realized quadratic variation in a functional context. Paper II introduces functional time series models and apply them to the modeling of volatility in the Swedish limit order book. More precisely, a functional approach to the estimation of volatility dynamics of the spreads (differences between the bid and ask prices) is presented through a case study. For that purpose, a two-step procedure for the estimation of functional linear models is adapted to the estimation of a functional dynamic time series model. Paper III studies a two-step estimation procedure for the functional models introduced in Paper II. For that purpose, data is simulated using the Heston stochastic volatility model, thereby obtaining time series of realized quadratic variations as functions of relative quantities of shares. In the first step, a dynamic time series model is fitted to each time series. This results in a set of inefficient raw estimates of the coefficient functions. In the second step, the raw estimates are smoothed. The second step improves on the first step since it yields both smooth and more efficient estimates. In this simulation, the smooth estimates are shown to perform better in terms of mean squared error. Paper IV introduces an alternative to the two-step estimation procedure mentioned above. This is achieved by taking into account the correlation structure of the error terms obtained in the first step. The proposed estimator is based on seemingly unrelated regression representation. Then, a multivariate generalized least squares estimator is used in a first step and its smooth version in a second step. Some of the asymptotic properties of the resulting two-step procedure are discussed. The new procedure is illustrated with functional high-frequency financial data.
6

Uma análise funcional da dinâmica de densidades de retornos financeiros

Horta, Eduardo de Oliveira January 2011 (has links)
Uma correta especificação das funções densidade de probabilidade (fdp’s) de retornos de ativos é um tópico dos mais relevantes na literatura de modelagem econométrica de dados financeiros. A presente dissertação propõe-se a oferecer, neste âmbito, uma abordagem distinta, através de uma aplicação da metodologia desenvolvida em Bathia et al. (2010) a dados intradiários do índice bovespa. Esta abordagem consiste em focar a análise diretamente sobre a estrutura dinâmica das fdp’s dos retornos, enxergando-as como uma sequência de variáveis aleatórias que tomam valores em um espaço de funções. A dependência serial existente entre essas curvas permite que se obtenham estimativas filtradas das fdp’s, e mesmo que se façam previsões sobre densidades de períodos subsequentes à amostra. No artigo que integra esta dissertação, onde é feita a mencionada aplicação, encontrou-se evidência de que o comportamento dinâmico das fdp’s dos retornos do índice bovespa se reduz a um processo bidimensional, o qual é bem representado por um modelo var(1) e cuja dinâmica afeta a dispersão e a assimetria das distribuições no suceder dos dias. Ademais, utilizando-se de subamostras, construíram-se previsões um passo à frente para essas fdp’s, e avaliaram-se essas previsões de acordo com métricas apropriadas. / Adequate specification of the probability density functions (pdf’s) of asset returns is a most relevant topic in econometric modelling of financial data. This dissertation aims to provide a distinct approach on that matter, through applying the methodology developed in Bathia et al. (2010) to intraday bovespa index data. This approach consists in focusing the analysis directly on the dynamic structure of returns fdp’s, seeing them as a sequence of function-valued random variables. The serial dependence of these curves allows one to obtain filtered estimates of the pdf’s, and even to forecast upcoming densities. In the paper contained into this dissertation, evidence is found that the dynamic structure of the bovespa index returns pdf’s reduces to a R2-valued process, which is well represented by a var(1) model, and whose dynamics affect the dispersion and symmetry of the distributions at each day. Moreover, one-step-ahead forecasts of upcoming pdf’s were constructed through subsamples and evaluated according to appropriate metrics.
7

Uma análise funcional da dinâmica de densidades de retornos financeiros

Horta, Eduardo de Oliveira January 2011 (has links)
Uma correta especificação das funções densidade de probabilidade (fdp’s) de retornos de ativos é um tópico dos mais relevantes na literatura de modelagem econométrica de dados financeiros. A presente dissertação propõe-se a oferecer, neste âmbito, uma abordagem distinta, através de uma aplicação da metodologia desenvolvida em Bathia et al. (2010) a dados intradiários do índice bovespa. Esta abordagem consiste em focar a análise diretamente sobre a estrutura dinâmica das fdp’s dos retornos, enxergando-as como uma sequência de variáveis aleatórias que tomam valores em um espaço de funções. A dependência serial existente entre essas curvas permite que se obtenham estimativas filtradas das fdp’s, e mesmo que se façam previsões sobre densidades de períodos subsequentes à amostra. No artigo que integra esta dissertação, onde é feita a mencionada aplicação, encontrou-se evidência de que o comportamento dinâmico das fdp’s dos retornos do índice bovespa se reduz a um processo bidimensional, o qual é bem representado por um modelo var(1) e cuja dinâmica afeta a dispersão e a assimetria das distribuições no suceder dos dias. Ademais, utilizando-se de subamostras, construíram-se previsões um passo à frente para essas fdp’s, e avaliaram-se essas previsões de acordo com métricas apropriadas. / Adequate specification of the probability density functions (pdf’s) of asset returns is a most relevant topic in econometric modelling of financial data. This dissertation aims to provide a distinct approach on that matter, through applying the methodology developed in Bathia et al. (2010) to intraday bovespa index data. This approach consists in focusing the analysis directly on the dynamic structure of returns fdp’s, seeing them as a sequence of function-valued random variables. The serial dependence of these curves allows one to obtain filtered estimates of the pdf’s, and even to forecast upcoming densities. In the paper contained into this dissertation, evidence is found that the dynamic structure of the bovespa index returns pdf’s reduces to a R2-valued process, which is well represented by a var(1) model, and whose dynamics affect the dispersion and symmetry of the distributions at each day. Moreover, one-step-ahead forecasts of upcoming pdf’s were constructed through subsamples and evaluated according to appropriate metrics.
8

Uma análise funcional da dinâmica de densidades de retornos financeiros

Horta, Eduardo de Oliveira January 2011 (has links)
Uma correta especificação das funções densidade de probabilidade (fdp’s) de retornos de ativos é um tópico dos mais relevantes na literatura de modelagem econométrica de dados financeiros. A presente dissertação propõe-se a oferecer, neste âmbito, uma abordagem distinta, através de uma aplicação da metodologia desenvolvida em Bathia et al. (2010) a dados intradiários do índice bovespa. Esta abordagem consiste em focar a análise diretamente sobre a estrutura dinâmica das fdp’s dos retornos, enxergando-as como uma sequência de variáveis aleatórias que tomam valores em um espaço de funções. A dependência serial existente entre essas curvas permite que se obtenham estimativas filtradas das fdp’s, e mesmo que se façam previsões sobre densidades de períodos subsequentes à amostra. No artigo que integra esta dissertação, onde é feita a mencionada aplicação, encontrou-se evidência de que o comportamento dinâmico das fdp’s dos retornos do índice bovespa se reduz a um processo bidimensional, o qual é bem representado por um modelo var(1) e cuja dinâmica afeta a dispersão e a assimetria das distribuições no suceder dos dias. Ademais, utilizando-se de subamostras, construíram-se previsões um passo à frente para essas fdp’s, e avaliaram-se essas previsões de acordo com métricas apropriadas. / Adequate specification of the probability density functions (pdf’s) of asset returns is a most relevant topic in econometric modelling of financial data. This dissertation aims to provide a distinct approach on that matter, through applying the methodology developed in Bathia et al. (2010) to intraday bovespa index data. This approach consists in focusing the analysis directly on the dynamic structure of returns fdp’s, seeing them as a sequence of function-valued random variables. The serial dependence of these curves allows one to obtain filtered estimates of the pdf’s, and even to forecast upcoming densities. In the paper contained into this dissertation, evidence is found that the dynamic structure of the bovespa index returns pdf’s reduces to a R2-valued process, which is well represented by a var(1) model, and whose dynamics affect the dispersion and symmetry of the distributions at each day. Moreover, one-step-ahead forecasts of upcoming pdf’s were constructed through subsamples and evaluated according to appropriate metrics.
9

Three Essays in Functional Time Series and Factor Analysis

Nisol, Gilles 20 December 2018 (has links) (PDF)
The thesis is dedicated to time series analysis for functional data and contains three original parts. In the first part, we derive statistical tests for the presence of a periodic component in a time series of functions. We consider both the traditional setting in which the periodic functional signal is contaminated by functional white noise, and a more general setting of a contaminating process which is weakly dependent. Several forms of the periodic component are considered. Our tests are motivated by the likelihood principle and fall into two broad categories, which we term multivariate and fully functional. Overall, for the functional series that motivate this research, the fully functional tests exhibit a superior balance of size and power. Asymptotic null distributions of all tests are derived and their consistency is established. Their finite sample performance is examined and compared by numerical studies and application to pollution data. In the second part, we consider vector autoregressive processes (VARs) with innovations having a singular covariance matrix (in short singular VARs). These objects appear naturally in the context of dynamic factor models. The Yule-Walker estimator of such a VAR is problematic, because the solution of the corresponding equation system tends to be numerically rather unstable. For example, if we overestimate the order of the VAR, then the singularity of the innovations renders the Yule-Walker equation system singular as well. Moreover, even with correctly selected order, the Yule-Walker system tends be close to singular in finite sample. We show that this has a severe impact on predictions. While the asymptotic rate of the mean square prediction error (MSPE) can be just like in the regular (non-singular) case, the finite sample behavior is suffering. This effect turns out to be particularly dramatic in context of dynamic factor models, where we do not directly observe the so-called common components which we aim to predict. Then, when the data are sampled with some additional error, the MSPE often gets severely inflated. We explain the reason for this phenomenon and show how to overcome the problem. Our numerical results underline that it is very important to adapt prediction algorithms accordingly. In the third part, we set up theoretical foundations and a practical method to forecast multiple functional time series (FTS). In order to do so, we generalize the static factor model to the case where cross-section units are FTS. We first derive a representation result. We show that if the first r eigenvalues of the covariance operator of the cross-section of n FTS are unbounded as n diverges and if the (r+1)th eigenvalue is bounded, then we can represent the each FTS as a sum of a common component driven by r factors and an idiosyncratic component. We suggest a method of estimation and prediction of such a model. We assess the performances of the method through a simulation study. Finally, we show that by applying our method to a cross-section of volatility curves of the stocks of S&P100, we have a better prediction accuracy than by limiting the analysis to individual FTS. / Doctorat en Sciences économiques et de gestion / info:eu-repo/semantics/nonPublished
10

Likelihood Ratio Combination of Multiple Biomarkers and Change Point Detection in Functional Time Series

Du, Zhiyuan 24 September 2024 (has links)
Utilizing multiple biomarkers in medical research is crucial for the diagnostic accuracy of detecting diseases. An optimal method for combining these biomarkers is essential to maximize the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC). The optimality of the likelihood ratio has been proven but the challenges persist in estimating the likelihood ratio, primarily on the estimation of multivariate density functions. In this study, we propose a non-parametric approach for estimating multivariate density functions by utilizing Smoothing Spline density estimation to approximate the full likelihood function for both diseased and non-diseased groups, which compose the likelihood ratio. Simulation results demonstrate the efficiency of our method compared to other biomarker combination techniques under various settings for generated biomarker values. Additionally, we apply the proposed method to a real-world study aimed at detecting childhood autism spectrum disorder (ASD), showcasing its practical relevance and potential for future applications in medical research. Change point detection for functional time series has attracted considerable attention from researchers. Existing methods either rely on FPCA, which may perform poorly with complex data, or use bootstrap approaches in forms that fall short in effectively detecting diverse change functions. In our study, we propose a novel self-normalized test for functional time series implemented via a non-overlapping block bootstrap to circumvent reliance on FPCA. The SN factor ensures both monotonic power and adaptability for detecting diverse change functions on complex data. We also demonstrate our test's robustness in detecting changes in the autocovariance operator. Simulation studies confirm the superior performance of our test across various settings, and real-world applications further illustrate its practical utility. / Doctor of Philosophy / In medical research, it is crucial to accurately detect diseases and predict patient outcomes using multiple health indicators, also known as biomarkers. Combining these biomarkers effectively can significantly improve our ability to diagnose and treat various health conditions. However, finding the best way to combine these biomarkers has been a long-standing challenge. In this study, we propose a new, easy-to-understand method for combining multiple biomarkers using advanced estimation techniques. Our method takes into account various factors and provides a more accurate way to evaluate the combined information from different biomarkers. Through simulations, we demonstrated that our method performs better than other existing methods under a variety of scenarios. Furthermore, we applied our new method to a real-world study focusing on detecting childhood autism spectrum disorder (ASD), highlighting its practical value and potential for future applications in medical research. Detecting changes in patterns over time, especially shifts in averages, has become an important focus in data analysis. Existing methods often rely on techniques that may not perform well with more complex data or are limited in the types of changes they can detect. In this study, we introduce a new approach that improves the accuracy of detecting changes in complex data patterns. Our method is flexible and can identify changes in both the mean and variation of the data over time. Through simulations, we demonstrate that this approach is more accurate than current methods. Furthermore, we applied our method to real-world climate research data, illustrating its practical value.

Page generated in 0.1148 seconds