Spelling suggestions: "subject:"biunctional ultrasound imaging"" "subject:"5functional ultrasound imaging""
1 |
Cerebral vascular patterns associated with theta and gamma rhythms during unrestrained behavior and REM sleep / Réponses hémodynamiques cérébrales associées aux rythmes thêta et gamma lors du mouvement libre et du sommeil paradoxalBergel, Antoine 13 December 2016 (has links)
Le rythme thêta est un rythme cérébral associé à l’activité locomotrice et au sommeil paradoxal. Bien que son implication dans la communication entre régions du cerveau et processus mnésiques ait largement été démontrée, il persiste un manque de données extensives dû à la difficulté d’imager l’ensemble de l’activité cérébrale dans des conditions naturelles de locomotion et d’exploration. Dans cette thèse, j’ai développé une approche qui combine l’enregistrement des potentiels de champs locaux à l’imagerie ultrasonore fonctionnelle (fUS) sur l’animal en mouvement libre. Pour la première fois, j’ai pu révéler les réponses hémodynamiques associées au rythme thêta dans la plupart des structures du système nerveux central avec de bonnes résolutions spatiale (100 x 100 x 400 μm) et temporelle (200 ms). Pendant la locomotion et le sommeil, les variations hémodynamiques de l’hippocampe, du thalamus dorsal et du cortex (rétrosplenial, somatosensoriel) corrèlent fortement avec la puissance instantanée du signal thêta hippocampique, avec un décalage temporel variant de 0.7 s à 2.0 s selon les structures. De manière intéressante, les rythmes gamma hippocampiques moyen (55-95 Hz) et rapide (100-150 Hz) expliquent la variance des signaux hémodynamiques mieux que le seul rythme thêta, alors que le rythme gamma lent (30-50 Hz) est non pertinent. L’hyperémie fonctionnelle de l’hippocampe suit séquentiellement la boucle tri-synaptique (gyrus denté - région CA3 - région CA1) et se renforce considérablement à mesure que la tâche progresse. Lors du sommeil paradoxal, j’ai observé une hyperémie tonique globale ainsi que des activations phasiques de grande amplitude initiées dans le thalamus et terminant dans les aires corticales, que nous avons appelées “poussées vasculaires”. De fortes bouffées d’activité gamma rapide (100-150 Hz) précèdent de manière robuste ces poussées vasculaires, l’inverse n’étant pas vrai. Dans l’ensemble, ces résultats révèlent la dynamique spatio-temporelle des signaux hémodynamiques associés à la locomotion et au sommeil paradoxal et suggèrent un lien fort entre rythmes thêta, gamma rapide et activité vasculaire globale / Theta rhythm is a prominent oscillatory pattern of EEG strongly associated with active locomotion and REM sleep. While it has been shown to play a crucial role in communication between brain areas and memory processes, there is a lack of extensive data due to the difficulty to image global brain activity during locomotion behavior. In this thesis, I developed an approach that combines local field potential recordings (LFP) and functional ultrasound imaging (fUS) to unrestrained rats. For the first time, I could image the hemodynamic responses associated with theta rhythm in most central nervous system (CNS) structures, with high spatial (100 x 100 x 400 μm) and temporal (200 ms) resolutions. During running and REM sleep, hemodynamic variations in the hippocampus, dorsal thalamus and cortices (S1BF, retrosplenial) correlated strongly with instantaneous theta power, with a delay ranging from 0.7 to 2.0 s after theta peak. Interestingly, mid (55-95 Hz) and high gamma (100-150 Hz) instantaneous power better explained hemodynamic variations than mere theta activity, while low-gamma (30-50 Hz) did not. Hippocampal hyperaemia followed sequentially the trisynaptic circuit (dentate gyrus - CA3 region - CA1 region) and was considerably strengthened as the task progressed. REM sleep revealed brain-wide tonic hyperaemia, together with phasic high-amplitude vascular activation starting in the dorsal thalamus and fading in cortical areas, which we referred to as “vascular surges”. Strong bursts of hippocampal high gamma (100-150 Hz) robustly preceded these surges, while the opposite was not true. Taken together, these results reveals the spatio-temporal dynamics of hemodynamics associated with locomotion and REM sleep and suggest a strong link between theta, high-gamma rhythms and brain-wide vascular activity.
|
2 |
Exploration des réseaux épileptiques par imagerie ultrasonore et électrophysiologie / Exploration of epileptic networks by functional ultrasound imaging and electrophysiologySieu, Lim-Anna 28 June 2016 (has links)
Les épilepsies sont des hyperactivités neuronales pathologiques largement distribuées au sein du système nerveux. Aborder la question de l'organisation spatiotemporelle de ces crises est un premier pas crucial vers la dissection des mécanismes qui les sous-tendent. Alors qu'il existe de nombreux modèles d'hyperactivité épileptiforme, il est plus difficile d'étudier les crises spontanées, qui sont altérées par la sédation. Dans cette thèse, j'ai développé une approche combinant l'électroencéphalogramme (EEG) avec l'imagerie fonctionnelle ultrasonore (fUS), sur le rat mobile. Ainsi, sur un modèle d'épilepsie absence, j'ai pu enregistrer simultanément la survenue des crises et les variations hémodynamiques, marqueurs du métabolisme cellulaire. Le suivi additionnel de l'activité hémodynamique n'avait pas d'effet en soi sur l'occurrence et la durée des crises épileptiques. L'analyse des enregistrements a permis de mettre en évidence des corrélations entre les activités électriques et vasculaires durant les crises. Tandis que le thalamus présentait des zones d'hyperperfusion pendant les crises, le cortex présentait des corrélats variables suivant les aires, avec une hyperémie des aires somato-sensorielles accompagnée parfois d'une baisse de perfusion des tissus adjacents. La sensibilité du fUS a révélé, à partir d'événements uniques, qu'une série de pointe-ondes observée par une électrode EEG ne s'accompagne pas toujours d'une hyperactivité vasculaire au même endroit. Ainsi, cette approche permet de délimiter le contour des aires présentant une activité vasculaire pendant les crises et montre une dichotomie partielle entre les composantes électriques et vasculaires des crises. / Epilepsies consist in neuronal hyperactivities distributed across the nervous system that need first to be located in order to later decipher the mechanisms of these pathologies. While there are many models of epileptiform hyperactivity, it is more difficult to study spontaneous seizures, which are altered by sedation. In this thesis, I developed an approach that combines electroencephalography (EEG) and functional ultrasound imaging (fUS), on the mobile rat. Thus, on a model of absence epilepsy, I could record simultaneously the occurrence of seizures and the hemodynamic variations, which reflect cellular metabolism. Seizures were unaltered by the recording protocol, compared to rats with EEG alone. Correlations were observed between electric and vascular activities. The thalamus showed areas of hyperperfusion during seizures. The cortex exhibited different correlates in distinct areas, with hyperaemia in somato-sensory areas, occasionally associated with a decrease in perfusion in adjacent tissue. The sensitivity of fUS, which could resolve blood changes from single occurrences, revealed that series of spike-wave discharges recorded from an EEG electrode were not always associated with vascular hyperactivity in the same region. Thus, this approach can delimit the contour of areas presenting vascular activity during seizures and shows a partial dichotomy between the electric and vascular components of seizures.
|
3 |
Functional ultrasound imaging (fUSi) to assess brain function in physiological and pathological conditions : application to stroke / Imagerie fonctionnelle par ultrason pour évaluer les fonction cérébrales en conditions physiologique et pathologique : application à l'AVCBrunner, Clément 19 December 2016 (has links)
Depuis le milieu du XXème siècle, les techniques d’imagerie fonctionnelles ont un rôle grandissant dans notre compréhension sur les fonctions du cerveau en conditions physiologique et pathologique. Bien que l’IRMf fasse partie des techniques les plus communément utilisées pour l’imagerie du cerveau complet lors d’études préclinique et clinique, cette modalité souffre de sa résolution spatiotemporelle et sa sensibilité pour enregistrer finement les fonctions et activités cérébrales. Récemment l’imagerie fonctionnelle par ultrason (ifUS) a subi des développements permettant d’être complémentaires à l’IRMf ainsi qu’aux autres techniques d’imagerie cérébrales classiquement employées. Contrairement aux ultrasons focalisés conventionnels, l’imagerie hémodynamique proposé par l’ifUS repose sur une illumination ultrasonore plane permettant la détection des globules rouges en mouvement et la mesure de leur vitesse dans les micro-vaisseaux cérébraux. De ce fait, l’ifUS est indirectement lié à l’activité cérébrale d’où l’importance d’une meilleure compréhension des mécanismes du couplage neuro-vasculaire liant l’activité neuronale et les variations cérébrales d’apport en sang. De plus, cette technique a le potentiel pour fournir des informations précises sur les processus de certaines pathologies à la fois sur des modèles précliniques et chez l’homme. Dans un premier temps, j’exposerais mes travaux sur les récents développements techniques permettant l’ifUS in vivo (i) en condition chronique, (ii) sur l’animal éveillé, libre de mouvement et effectuant une tache comportementale et (iii) des vaisseaux capillaires chez le rongeur et l’homme. Dans un second temps, je démontrerais que l’ifUS in vivo peut fournir des informations nouvelles sur des pathologies telles que l’accident vasculaire cérébrale. / Since the middle of the 20th century, functional imaging technologies are making an increasing impact on our understanding on brain functions in both physiological and pathological conditions. Even if fMRI is nowadays one of the most used tool for whole brain imaging in pre-clinical and clinical studies, it lacks sufficient spatiotemporal resolution and sensitivity to assess fine brain function and activity. Functional ultrasound imaging (fUSi) has been recently developed and presents a potential to complement fMRI and other existing brain imaging modalities. Contrary to conventional ultrasound using focus beams, fUSi relies on hemodynamic imaging based on ultrasound plane-wave illumination to detect red blood cells movement and velocity in brain micro-vessels. Consequently, the fUSi signal is indirectly related to brain activity and it is therefore important to better understand the mechanisms of the neurovascular coupling linking neural activity and cerebral blood changes. Here again, fUSi may provide relevant information about disease processes in preclinical models but also in humans. First, I will present recent technical developments allowing in vivo fUSi (i) in chronic condition, (ii) in freely moving and behaving rats and (iii) in rodents and human brain capillaries. Second, I will demonstrate how fUSi could provide new insights in brain pathologies such as stroke.
|
4 |
Imagerie cérébrale et étude de la connectivité fonctionnelle par échographie Doppler ultrarapide chez le petit animal éveillé et en mouvement / Brain imaging and study of the functional connectivity by ultrafast Doppler imaging in awake and moving rodentsTiran, Elodie 19 June 2017 (has links)
Mes travaux de thèse portent sur l’application de l’imagerie fUS (functional ultrasound imaging) à l’imagerie cérébrale préclinique chez le petit animal. Le but était de transformer cette technique d’imagerie cérébrale récente en un véritable outil de quantification de l’état cérébral. Les objectifs principaux ont été de démontrer la faisabilité de l’imagerie fUS chez le petit animal non anesthésié ainsi que de passer du modèle rat au modèle souris - modèle de choix en imagerie préclinique en neurosciences - de surcroît de façon non invasive. J’ai tout d’abord mis au point une nouvelle séquence d’imagerie ultrasonore ultrarapide (Multiplane Wave imaging), permettant d’améliorer le rapport signal-à-bruit des images grâce à l’augmentation virtuelle de l’amplitude du signal émis, sans diminuer la cadence ultrarapide d’acquisition. Dans un deuxième temps j’ai démontré la possibilité d’imager le cerveau de la souris et du jeune rat anesthésiés par échographie Doppler ultrarapide, de manière transcrânienne et complètement non invasive, sans chirurgie ni injection d’agents de contraste. J’ai ensuite mis au point un montage expérimental, une séquence ultrasonore et un protocole expérimental permettant de réaliser de l’imagerie fUS de manière minimalement invasive chez des souris éveillées et libres de leurs mouvements. Enfin, j’ai démontré la possibilité d’utiliser le fUS pour étudier la connectivité fonctionnelle du cerveau au repos (sans stimulus) chez des souris éveillées ou sédatées. L’imagerie fUS et la combinaison « modèle souris » + « minimalement invasif » + « animal éveillé » + « connectivité fonctionnelle » constituent un outil précieux pour la communauté des neuroscientifiques travaillant sur des modèles animaux pathologiques ou de nouvelles molécules pharmacologiques / My work focuses on the application of fUS (functional ultrasound) imaging to preclinical brain imaging in small animals. The goal of my thesis was to turn this recent vascular brain imaging technique into a quantifying tool for cerebral state. The main objectives were to demonstrate the feasibility of fUS imaging in the non-anaesthetized small rodents and to move from rat model imaging to mouse model imaging –most used model for preclinical studies in neuroscience-, while developing the least invasive imaging protocols. First, I have developed a new ultrafast ultrasonic imaging sequence (Multiplane Wave imaging), improving the image signal-to-noise ratio by virtually increasing emitted signal amplitude, without reducing the ultrafast framerate. Then, I have demonstrated the possibility to use ultrafast Doppler ultrasound imaging to image both the mouse brain and the young rat brain, non-invasively and through the intact skull, without surgery or contrast agents injection. Next, I have developed an experimental setup, an ultrasound sequence and an experimental protocol to perform minimally invasive fUS imaging in awake and freely-moving mice. Finally, I have demonstrated the possibility to use fUS imaging to study the functional connectivity of the brain in a resting state in awake or sedated mice, still in a transcranial and minimally invasive way. fUS imaging and the combination of "mouse model" + "minimally invasive" + "awake animal" + "functional connectivity" represent a very promising tool for the neuroscientist community working on pathological animal models or new pharmacological molecules
|
Page generated in 0.1288 seconds