Spelling suggestions: "subject:"sunk–radon transform"" "subject:"sunk–madon transform""
1 |
A generalization of the Funk–Radon transform to circles passing through a fixed pointQuellmalz, Michael 29 June 2016 (has links) (PDF)
The Funk–Radon transform assigns to a function on the two-sphere its mean values along all great circles. We consider the following generalization: we replace the great circles by the small circles being the intersection of the sphere with planes containing a common point ζ inside the sphere. If ζ is the origin, this is just the classical Funk–Radon transform. We find two mappings from the sphere to itself that enable us to represent the generalized Radon transform in terms of the Funk–Radon transform. This representation is utilized to characterize the nullspace and range as well as to prove an inversion formula of the generalized Radon transform.
|
2 |
A generalization of the Funk–Radon transform to circles passing through a fixed pointQuellmalz, Michael January 2015 (has links)
The Funk–Radon transform assigns to a function on the two-sphere its mean values along all great circles. We consider the following generalization: we replace the great circles by the small circles being the intersection of the sphere with planes containing a common point ζ inside the sphere. If ζ is the origin, this is just the classical Funk–Radon transform. We find two mappings from the sphere to itself that enable us to represent the generalized Radon transform in terms of the Funk–Radon transform. This representation is utilized to characterize the nullspace and range as well as to prove an inversion formula of the generalized Radon transform.
|
3 |
High angular resolution diffusion-weighted magnetic resonance imaging: adaptive smoothing and applicationsMetwalli, Nader 07 July 2010 (has links)
Diffusion-weighted magnetic resonance imaging (MRI) has allowed unprecedented non-invasive mapping of brain neural connectivity in vivo by means of fiber tractography applications. Fiber tractography has emerged as a useful tool for mapping brain white matter connectivity prior to surgery or in an intraoperative setting. The advent of high angular resolution diffusion-weighted imaging (HARDI) techniques in MRI for fiber tractography has allowed mapping of fiber tracts in areas of complex white matter fiber crossings. Raw HARDI images, as a result of elevated diffusion-weighting, suffer from depressed signal-to-noise ratio (SNR) levels. The accuracy of fiber tractography is dependent on the performance of the various methods extracting dominant fiber orientations from the HARDI-measured noisy diffusivity profiles. These methods will be sensitive to and directly affected by the noise. In the first part of the thesis this issue is addressed by applying an objective and adaptive smoothing to the noisy HARDI data via generalized cross-validation (GCV) by means of the smoothing splines on the sphere method for estimating the smooth diffusivity profiles in three dimensional diffusion space. Subsequently, fiber orientation distribution functions (ODFs) that reveal dominant fiber orientations in fiber crossings are then reconstructed from the smoothed diffusivity profiles using the Funk-Radon transform. Previous ODF smoothing techniques have been subjective and non-adaptive to data SNR. The GCV-smoothed ODFs from our method are accurate and are smoothed without external intervention facilitating more precise fiber tractography.
Diffusion-weighted MRI studies in amyotrophic lateral sclerosis (ALS) have revealed significant changes in diffusion parameters in ALS patient brains. With the need for early detection of possibly discrete upper motor neuron (UMN) degeneration signs in patients with early ALS, a HARDI study is applied in order to investigate diffusion-sensitive changes reflected in the diffusion tensor imaging (DTI) measures axial and radial diffusivity as well as the more commonly used measures fractional anisotropy (FA) and mean diffusivity (MD). The hypothesis is that there would be added utility in considering axial and radial diffusivities which directly reflect changes in the diffusion tensors in addition to FA and MD to aid in revealing neurodegenerative changes in ALS. In addition, applying adaptive smoothing via GCV to the HARDI data further facilitates the application of fiber tractography by automatically eliminating spurious noisy peaks in reconstructed ODFs that would mislead fiber tracking.
|
4 |
Reconstructing Functions on the Sphere from Circular MeansQuellmalz, Michael 09 April 2020 (has links)
The present thesis considers the problem of reconstructing a function f that is defined on the d-dimensional unit sphere from its mean values along hyperplane sections. In case of the two-dimensional sphere, these plane sections are circles. In many tomographic applications, however, only limited data is available. Therefore, one is interested in the reconstruction of the function f from its mean values with respect to only some subfamily of all hyperplane sections of the sphere. Compared with the full data case, the limited data problem is more challenging and raises several questions. The first one is the injectivity, i.e., can any function be uniquely reconstructed from the available data? Further issues are the stability of the reconstruction, which is closely connected with a description of the range, as well as the demand for actual inversion methods or algorithms.
We provide a detailed coverage and answers of these questions for different families of hyperplane sections of the sphere such as vertical slices, sections with hyperplanes through a common point and also incomplete great circles. Such reconstruction problems arise in various practical applications like Compton camera imaging, magnetic resonance imaging, photoacoustic tomography, Radar imaging or seismic imaging. Furthermore, we apply our findings about spherical means to the cone-beam transform and prove its singular value decomposition. / Die vorliegende Arbeit beschäftigt sich mit dem Problem der Rekonstruktion einer Funktion f, die auf der d-dimensionalen Einheitssphäre definiert ist, anhand ihrer Mittelwerte entlang von Schnitten mit Hyperebenen. Im Fall d=2 sind diese Schnitte genau die Kreise auf der Sphäre. In vielen tomografischen Anwendungen sind aber nur eingeschränkte Daten verfügbar. Deshalb besteht das Interesse an der Rekonstruktion der Funktion f nur anhand der Mittelwerte bestimmter Familien von Hyperebenen-Schnitten der Sphäre. Verglichen mit dem Fall vollständiger Daten birgt dieses Problem mehrere Herausforderungen und Fragen. Die erste ist die Injektivität, also können alle Funktionen anhand der gegebenen Daten eindeutig rekonstruiert werden? Weitere Punkte sind die die Frage nach der Stabilität der Rekonstruktion, welche eng mit einer Beschreibung der Bildmenge verbunden ist, sowie der praktische Bedarf an Rekonstruktionsmethoden und -algorithmen.
Diese Arbeit gibt einen detaillierten Überblick und Antworten auf diese Fragen für verschiedene Familien von Hyperebenen-Schnitten, angefangen von vertikalen Schnitten über Schnitte mit Hyperebenen durch einen festen Punkt sowie Kreisbögen. Solche Rekonstruktionsprobleme treten in diversen Anwendungen auf wie der Bildgebung mittels Compton-Kamera, Magnetresonanztomografie, fotoakustischen Tomografie, Radar-Bildgebung sowie der Tomografie seismischer Wellen. Weiterhin nutzen wir unsere Ergebnisse über sphärische Mittelwerte, um eine Singulärwertzerlegung für die Kegelstrahltomografie zu zeigen.
|
Page generated in 0.08 seconds