• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exceptional polynomials and monodromy groups in positive characteristic / Exzeptionelle Polynome und Monodromiegruppen in positiver Charakteristik

Möller, Florian January 2009 (has links) (PDF)
We discuss exceptional polynomials, i.e. polynomials over a finite field $k$ that induce bijections over infinitely many finite extensions of $k$. In the first chapters we give the theoretical background to characterize this class of polynomials with Galois theoretic means. This leads to the notion of arithmetic resp. geometric monodromy groups. In the remaining chapters we restrict our attention to polynomials with primitive affine arithmetic monodromy group. We first classify all exceptional polynomials with the fixed field of the affine kernel of the arithmetic monodromy group being of genus less or equal to 2. Next we show that every full affine group can be realized as the monodromy group of a polynomial. In the remaining chapters we classify affine polynomials of a given degree. / In dieser Arbeit werden exzeptionelle Polynome untersucht. Ein über einem endlichen Körper $k$ definiertes Polynom heißt exzeptionell, falls durch dieses auf unendlich vielen endlichen Erweiterungen von $k$ Bijektionen induziert werden. In den ersten Kapiteln legen wir die theoretischen Grundlagen, die uns eine Charakterisierung exzeptioneller Polynome mittels Galoistheorie erlauben. Wir benötigen hierzu insbesondere den Begriff der arithmetischen bzw. geometrischen Monodromiegruppe. In den folgenden Kapiteln behandeln wir schwerpunktmäßig Polynome mit primitiver affiner arithmetischer Monodromiegruppe. Zunächst klassifizieren wir alle exzeptionellen Polynome, die der Bedingung genügen, daß der Fixkörper des affinen Kerns ein Geschlecht kleiner oder gleich 2 besitzt. Danach zeigen wir, daß jede volle affine Gruppe als geometrische Monodromiegruppe eines Polynoms auftritt. In den restlichen Kapiteln klassifizieren wir affine Polynome von vorgegebenem Grad.
2

The inverse Galois problem and explicit computation of families of covers of \(\mathbb{P}^1\mathbb{C}\) with prescribed ramification / Das Umkehrproblem der Galoistheorie und explizite Berechnung von Familien von Überlagerungen des \(\mathbb{P}^1\mathbb{C}\) mit vorgegebener Verzweigung

König, Joachim January 2014 (has links) (PDF)
In attempting to solve the regular inverse Galois problem for arbitrary subfields K of C (particularly for K=Q), a very important result by Fried and Völklein reduces the existence of regular Galois extensions F|K(t) with Galois group G to the existence of K-rational points on components of certain moduli spaces for families of covers of the projective line, known as Hurwitz spaces. In some cases, the existence of rational points on Hurwitz spaces has been proven by theoretical criteria. In general, however, the question whether a given Hurwitz space has any rational point remains a very difficult problem. In concrete cases, it may be tackled by an explicit computation of a Hurwitz space and the corresponding family of covers. The aim of this work is to collect and expand on the various techniques that may be used to solve such computational problems and apply them to tackle several families of Galois theoretic interest. In particular, in Chapter 5, we compute explicit curve equations for Hurwitz spaces for certain families of \(M_{24}\) and \(M_{23}\). These are (to my knowledge) the first examples of explicitly computed Hurwitz spaces of such high genus. They might be used to realize \(M_{23}\) as a regular Galois group over Q if one manages to find suitable points on them. Apart from the calculation of explicit algebraic equations, we produce complex approximations for polynomials with genus zero ramification of several different ramification types in \(M_{24}\) and \(M_{23}\). These may be used as starting points for similar computations. The main motivation for these computations is the fact that \(M_{23}\) is currently the only remaining sporadic group that is not known to occur as a Galois group over Q. We also compute the first explicit polynomials with Galois groups \(G=P\Gamma L_3(4), PGL_3(4), PSL_3(4)\) and \(PSL_5(2)\) over Q(t). Special attention will be given to reality questions. As an application we compute the first examples of totally real polynomials with Galois groups \(PGL_2(11)\) and \(PSL_3(3)\) over Q. As a suggestion for further research, we describe an explicit algorithmic version of "Algebraic Patching", following the theory described e.g. by M. Jarden. This could be used to conquer some problems regarding families of covers of genus g>0. Finally, we present explicit Magma implementations for several of the most important algorithms involved in our computations. / Das Umkehrproblem der Galoistheorie und explizite Berechnung von Familien von Überlagerungen des \(\mathbb{P}^1\mathbb{C}\) mit vorgegebener Verzweigung

Page generated in 0.0929 seconds