• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The inverse Galois problem and explicit computation of families of covers of \(\mathbb{P}^1\mathbb{C}\) with prescribed ramification / Das Umkehrproblem der Galoistheorie und explizite Berechnung von Familien von Überlagerungen des \(\mathbb{P}^1\mathbb{C}\) mit vorgegebener Verzweigung

König, Joachim January 2014 (has links) (PDF)
In attempting to solve the regular inverse Galois problem for arbitrary subfields K of C (particularly for K=Q), a very important result by Fried and Völklein reduces the existence of regular Galois extensions F|K(t) with Galois group G to the existence of K-rational points on components of certain moduli spaces for families of covers of the projective line, known as Hurwitz spaces. In some cases, the existence of rational points on Hurwitz spaces has been proven by theoretical criteria. In general, however, the question whether a given Hurwitz space has any rational point remains a very difficult problem. In concrete cases, it may be tackled by an explicit computation of a Hurwitz space and the corresponding family of covers. The aim of this work is to collect and expand on the various techniques that may be used to solve such computational problems and apply them to tackle several families of Galois theoretic interest. In particular, in Chapter 5, we compute explicit curve equations for Hurwitz spaces for certain families of \(M_{24}\) and \(M_{23}\). These are (to my knowledge) the first examples of explicitly computed Hurwitz spaces of such high genus. They might be used to realize \(M_{23}\) as a regular Galois group over Q if one manages to find suitable points on them. Apart from the calculation of explicit algebraic equations, we produce complex approximations for polynomials with genus zero ramification of several different ramification types in \(M_{24}\) and \(M_{23}\). These may be used as starting points for similar computations. The main motivation for these computations is the fact that \(M_{23}\) is currently the only remaining sporadic group that is not known to occur as a Galois group over Q. We also compute the first explicit polynomials with Galois groups \(G=P\Gamma L_3(4), PGL_3(4), PSL_3(4)\) and \(PSL_5(2)\) over Q(t). Special attention will be given to reality questions. As an application we compute the first examples of totally real polynomials with Galois groups \(PGL_2(11)\) and \(PSL_3(3)\) over Q. As a suggestion for further research, we describe an explicit algorithmic version of "Algebraic Patching", following the theory described e.g. by M. Jarden. This could be used to conquer some problems regarding families of covers of genus g>0. Finally, we present explicit Magma implementations for several of the most important algorithms involved in our computations. / Das Umkehrproblem der Galoistheorie und explizite Berechnung von Familien von Überlagerungen des \(\mathbb{P}^1\mathbb{C}\) mit vorgegebener Verzweigung
2

Computation of multi-branch-point covers and applications in Galois theory / Berechnung von Mehrpunktüberlagerungen und Anwendungen in der Galoistheorie

Barth, Dominik January 2022 (has links) (PDF)
We present a technique for computing multi-branch-point covers with prescribed ramification and demonstrate the applicability of our method in relatively large degrees by computing several families of polynomials with symplectic and linear Galois groups. As a first application, we present polynomials over \(\mathbb{Q}(\alpha,t)\) for the primitive rank-3 groups \(PSp_4(3)\) and \(PSp_4(3).C_2\) of degree 27 and for the 2-transitive group \(PSp_6(2)\) in its actions on 28 and 36 points, respectively. Moreover, the degree-28 polynomial for \(PSp_6(2)\) admits infinitely many totally real specializations. Next, we present the first (to the best of our knowledge) explicit polynomials for the 2-transitive linear groups \(PSL_4(3)\) and \(PGL_4(3)\) of degree 40, and the imprimitive group \(Aut(PGL_4(3))\) of degree 80. Additionally, we negatively answer a question by König whether there exists a degree-63 rational function with rational coefficients and monodromy group \(PSL_6(2)\) ramified over at least four points. This is achieved due to the explicit computation of the corresponding hyperelliptic genus-3 Hurwitz curve parameterizing this family, followed by a search for rational points on it. As a byproduct of our calculations we obtain the first explicit \(Aut(PSL_6(2))\)-realizations over \(\mathbb{Q}(t)\). At last, we present a technique by Elkies for bounding the transitivity degree of Galois groups. This provides an alternative way to verify the Galois groups from the previous chapters and also yields a proof that the monodromy group of a degree-276 cover computed by Monien is isomorphic to the sporadic 2-transitive Conway group \(Co_3\). / Wir stellen eine Technik zur Berechnung von Mehrpunktüberlagerungen mit vorgeschriebener Verzweigung vor und demonstrieren die Anwendbarkeit unserer Methode in relativ großen Graden durch die Berechnung mehrerer Familien von Polynomen mit symplektischen und linearen Galoisgruppen. Als erste Anwendung präsentieren wir Polynome über \(\mathbb{Q}(\alpha,t)\) für die primitiven Rang-3-Gruppen \(PSp_4(3)\) und \(PSp_4(3).C_2\) vom Grad 27 und für die 2-fach transitive Gruppe \(PSp_6(2)\) in ihren Operationen auf 28 bzw. 36 Punkten. Außerdem lässt das Polynom vom Grad 28 für \(PSp_6(2)\) unendlich viele total-reelle Spezialisierungen zu. Als Nächstes präsentieren wir die (unseres Wissens nach) ersten expliziten Polynome für die 2-fach transitiven linearen Gruppen \(PSL_4(3)\) und \(PGL_4(3)\) vom Grad 40 und die imprimitive Gruppe \(Aut(PGL_4(3))\) vom Grad 80. Zusätzlich geben wir eine negative Antwort auf die Frage von König, ob es eine rationale Funktion vom Grad 63 mit rationalen Koeffizienten gibt, die über mindestens vier Punkten verzweigt ist und Monodromiegruppe \(PSL_6(2)\) besitzt. Dies wird durch die explizite Berechnung der entsprechenden hyperelliptischen Geschlecht-3 Hurwitzkurve erreicht, die diese Familie parametrisiert, gefolgt von einer Suche nach rationalen Punkten auf ihr. Als Nebenprodukt unserer Berechnungen erhalten wir die ersten expliziten \(Aut(PSL_6(2))\)-Realisierungen über \(\mathbb{Q}(t)\). Schließlich stellen wir eine Technik von Elkies zur Beschränkung des Transitivitätsgrades von Galoisgruppen vor. Diese bietet einen alternativen Weg, die Galoisgruppen aus den vorherigen Kapiteln zu verifizieren und liefert auch einen Beweis dafür, dass die Monodromiegruppe einer von Monien berechneten Grad-276 Überlagerung isomorph zur sporadischen 2-fach transitiven Conway-Gruppe \(Co_3\) ist.

Page generated in 0.0251 seconds