Spelling suggestions: "subject:"furnace offgas -- spatilisation"" "subject:"furnace offgas -- volatilisation""
1 |
Multi-objective optimisation using the cross-entropy method in CO gas management at a South African ilmenite smelterStadler, Johan George 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: In a minerals processing environment, stable production processes, cost minimisation and energy efficiency are key to operational excellence, safety and profitability. At an ilmenite smelter, typically found in the heavy minerals industry, it is no different. Management of an ilmenite smelting process is a complex, multi-variable challenge with high costs and safety risks at stake. A by-product of ilmenite smelting is superheated carbon monoxide (CO) gas, or furnace off-gas. This gas is inflammable and extremely poisonous to humans. At the same time the gas is a potential energy source for various on-site heating applications. Re-using furnace off-gas can increase the energy efficiency of the energy intensive smelting process and can save on the cost of procuring other gas for heating purposes.
In this research project, the management of CO gas from the Tronox KZN Sands ilmenite smelter in South Africa was studied with the aim of optimising the current utilisation of the gas. In the absence of any buffer capacity in the form of a pressure vessel, the stability of the available CO gas is directly dependent on the stability of the furnaces. The CO gas has been identified as a partial replacement for methane gas which is currently purchased for drying and heating of feed material and pre-heating of certain smelter equipment. With no buffer capacity between the furnaces and the gas consuming plants, a dynamic prioritisation approach had to be found if the CO was to replace the methane. The dynamics of this supply-demand problem, which has been termed the “CO gas problem”, needed to be studied.
A discrete-event simulation model was developed to match the variable supply of CO gas to the variable demand for gas over time – the demand being a function of the availability of the plants requesting the gas, and the feed rates and types of feed material processed at those plants. The problem was formulated as a multi-objective optimisation problem with the two main, conflicting objectives, identified as: 1) the average production time lost per plant per day due to CO-methane switchovers; and 2) the average monthly saving on methane gas costs due to lower consumption thereof. A metaheuristic, namely multi-objective optimisation using the cross-entropy method, or MOO CEM, was applied as optimisation algorithm to solve the CO gas problem. The performance of the MOO CEM algorithm was compared with that of a recognised benchmark algorithm for multi-objective optimisation, the NSGA II, when both were applied to the CO gas problem.
The background of multi-objective optimisation, metaheuristics and the usage of furnace off-gas, particularly CO gas, were investigated in the literature review. The simulation model was then developed and the optimisation algorithm applied.
The research aimed to comment on the merit of the MOO CEM algorithm for solving the dynamic, stochastic CO gas problem and on the algorithm’s performance compared to the benchmark algorithm. The results served as a basis for recommendations to Tronox KZN Sands in order to implement a project to optimise usage and management of the CO gas. / AFRIKAANSE OPSOMMING: In mineraalprosessering is stabiele produksieprosesse, kostebeperking en energie-effektiwiteit sleuteldrywers tot bedryfsprestasie, veiligheid en wins. ‘n Ilmenietsmelter, tipies aangetref in swaarmineraleprosessering, is geen uitsondering nie. Die bestuur van ‘n ilmenietsmelter is ‘n komplekse, multi-doelwit uitdaging waar hoë kostes en veiligheidsrisiko’s ter sprake is. ‘n Neweproduk van die ilmenietsmeltproses is superverhitte koolstofmonoksiedgas (CO gas). Hierdie gas is ontvlambaar en uiters giftig vir die mens. Terselfdertyd kan hierdie gas benut word as energiebron vir allerlei verhittingstoepassings. Die herbenutting van CO gas vanaf die smelter kan die energie-effektiwiteit van die energie-intensiewe smeltproses verhoog en kan verder kostes bespaar op die aankoop van ‘n ander gas vir verhittingsdoeleindes.
In hierdie navorsingsprojek is die bestuur van die CO gasstroom wat deur die ilmenietsmelter van Tronox KZN Sands in Suid-Afrika geproduseer word, ondersoek met die doel om die huidige benuttingsvlak daarvan te verbeter. Weens die afwesigheid van enige bufferkapasiteit in die vorm van ‘n drukbestande tenk, is die stabiliteit van CO gas beskikbaar vir hergebruik direk afhanklik van die stabiliteit van die twee hoogoonde wat die gas produseer. Die CO gas kan gedeeltelik metaangas, wat tans aangekoop word vir die droog en verhitting van voermateriaal en vir die voorverhitting van sekere smeltertoerusting, vervang. Met geen bufferkapasiteit tussen die hoogoonde en die aanlegte waar die gas verbruik word nie, was die ondersoek van ‘n dinamiese prioritiseringsbenadering nodig om te kon vasstel of die CO die metaangas kon vervang. Die dinamika van hierdie vraag-aanbod probleem, getiteld die “CO gasprobleem”, moes bestudeer word.
‘n Diskrete-element simulasiemodel is ontwikkel as probleemoplossingshulpmiddel om die vraag-aanbodproses te modelleer en die prioritiseringsbenadering te ondersoek. Die doel van die model was om oor tyd die veranderlike hoeveelhede van geproduseerde CO teenoor die veranderlike gasaanvraag te vergelyk. Die vlak van gasaanvraag is afhanklik van die beskikbaarheidsvlak van die aanlegte waar die gas verbruik word, sowel as die voertempo’s en tipes voermateriaal in laasgenoemde aanlegte. Die probleem is geformuleer as ‘n multi-doelwit optimeringsprobleem met twee hoof, teenstrydige doelwitte: 1) die gemiddelde verlies aan produksietyd per aanleg per dag weens oorgeskakelings tussen CO en metaangas; 2) die gemiddelde maandelikse besparing op metaangaskoste weens laer verbruik van dié gas. ‘n Metaheuristiek, genaamd MOO CEM (multi-objective optimisation using the cross-entropy method), is ingespan as optimeringsalgoritme om die CO gasprobleem op te los. Die prestasie van die MOO CEM algoritme is vergelyk met dié van ‘n algemeen aanvaarde riglynalgoritme, die NSGA II, met beide toepas op die CO gasprobleem.
The agtergrond van multi-doelwit optimering, metaheuristieke en die benutting van hoogoond af-gas, spesifiek CO gas, is ondersoek in die literatuurstudie. Die simulasiemodel is daarna ontwikkel en die optimeringsalgoritme is toegepas.
|
Page generated in 0.0786 seconds