131 |
Possible Bow Shock Current Closure to Earth's High Latitude Ionosphere on Open Field LinesNordin, Gabriella January 2023 (has links)
The bow shock is formed due to the abrupt deceleration of the supersonic solar wind in front of the terrestrial magnetic field. The solar wind plasma and the Interplanetary Magnetic Field (IMF) are both compressed across the shock, and according to Ampère's law a current thus flows on the bow shock at all times. The Bow Shock Current (BSC) is suggested to play an important role in solar wind-magnetosphere coupling, but there is still an open debate about its closure path. For predominantly east-west IMF, the BSC has been suggested to close to Earth's high latitude ionosphere as Field-Aligned Currents (FACs). Since the bow shock is magnetically connected to the solar wind, it must do so via open field lines through the magnetosheath. For southwards IMF with a significant east-west component, the R0 FAC flows into the ionosphere in one hemisphere, and out of it in the other. The R0 current flows on open field lines, and is thus a potential candidate to close the BSC. While a few studies have already found evidence in favour of this idea, the majority have been based on simulations. Additional observational evidence is required to confirm these findings. We used OMNI data for the IMF at the bow shock, and Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) data for the FACs, to make simultaneous observations of the IMF at the bow shock and the northern hemisphere FACs, including the R0 current. We successfully identified 15 events of southwards but predominantly east-west IMF (Bz<0, |By|>|Bz|) at the bow shock, for which the northern hemisphere R0 current could be observed both in the AMPERE and DMSP data. In each of these events, the R0 current was of the correct polarity to connect to the BSC. Moreover, using Defense Meteorological Satellite Program (DMSP) and Super Dual Auroral Radar Network (SuperDARN) data, we were able to verify that part of the R0 current was flowing on open field lines. Collectively, the 15 events presented here constitute an argument in favour of at least a partial BSC closure to Earth's high latitude ionosphere as R0 FACs, for predominantly east-west IMF. Additional investigation is required to reveal the details of BSC closure.
|
132 |
Comparison of different approaches for modelling the beam-target reactivity in fusion plasmasPetersson, Marcus January 2022 (has links)
Fusion research has been an ongoing research endeavour for many decades and it has the potential of providing an important part in the future of energy production. An important part of this process is to understand and control the various heating systems of the reactor where one of the most important systems being the Neutral Beam Injector (NBI) which injects particles at high velocities into the plasma. The number of fusion reactions caused by this process depends on the beam-target reactivity where the beam can be modelled in various ways. The aim of this report was to compare the results of two different approaches in modelling the beam-target reactivity. This was done using two models, Stix and TRANSP which has different strengths and weaknesses but they use the same input parameters. Hence it is interesting to assess how much accuracy is sacrificed when using the simpler model (Stix). The aim of this report was to compare beam-target reactivty calculations based on two different approaches for modelling the distribution of the beam ions. One approach (TRANSP) performs very detailed modelling of both the energy distribution and the distribution in pitch (i.e. the direction of the velocity with respect to the plasma magnetic field), but is also very time consuming. The other approach (Stix) is more simplistic but can only provide the distribution in energy (no pitch information). It was found that the beam-target reactivities calculated from these two modelling approaches typically differed by about 10-20 percent (a bit more a the very edge of the fusion plasma, but this is not a great concerns since very few fusion reactions happen in this region). The difference in reactivity values could be attributed to differences in the modelled energy distributions and the fact that the Stix model does not model the pitch distribution. These results provide useful insights about the merits and drawbacks of the TRANSP and Stix models. In particular, it can be useful for quantifying the uncertainty introduced by using the Stix model instead of TRANSP if the beam-target reactivity is used as input for interpreting neutron measurements from fusion plasmas.
|
133 |
Variance reduction methods for numerical solution of plasma kinetic diffusionHöök, Lars Josef January 2012 (has links)
Performing detailed simulations of plasma kinetic diffusion is a challenging task and currently requires the largest computational facilities in the world. The reason for this is that, the physics in a confined heated plasma occur on a broad range of temporal and spatial scales. It is therefore of interest to improve the computational algorithms together with the development of more powerful computational resources. Kinetic diffusion processes in plasmas are commonly simulated with the Monte Carlo method, where a discrete set of particles are sampled from a distribution function and advanced in a Lagrangian frame according to a set of stochastic differential equations. The Monte Carlo method introduces computational error in the form of statistical random noise produced by a finite number of particles (or markers) N and the error scales as αN−β where β = 1/2 for the standard Monte Carlo method. This requires a large number of simulated particles in order to obtain a sufficiently low numerical noise level. Therefore it is essential to use techniques that reduce the numerical noise. Such methods are commonly called variance reduction methods. In this thesis, we have developed new variance reduction methods with application to plasma kinetic diffusion. The methods are suitable for simulation of RF-heating and transport, but are not limited to these types of problems. We have derived a novel variance reduction method that minimizes the number of required particles from an optimization model. This implicitly reduces the variance when calculating the expected value of the distribution, since for a fixed error the optimization model ensures that a minimal number of particles are needed. Techniques that reduce the noise by improving the order of convergence, have also been considered. Two different methods have been tested on a neutral beam injection scenario. The methods are the scrambled Brownian bridge method and a method here called the sorting and mixing method of L´ecot and Khettabi[1999]. Both methods converge faster than the standard Monte Carlo method for modest number of time steps, but fail to converge correctly for large number of time steps, a range required for detailed plasma kinetic simulations. Different techniques are discussed that have the potential of improving the convergence to this range of time steps. / QC 20120314
|
134 |
The dynamics of Alfvén eigenmodes excited by energetic ions in toroidal plasmasTholerus, Emmi January 2016 (has links)
The future fusion power plants that are based on magnetic confinement will deal with plasmas that inevitably contain energetic (non-thermal) particles. These particles come, for instance, from fusion reactions or from external heating of the plasma. Ensembles of energetic ions can excite eigenmodes in the Alfvén frequency range to such an extent that the resulting wave fields redistribute the energetic ions, and potentially eject them from the plasma. The redistribution of ions may cause a substantial reduction of heating efficiency. Understanding the dynamics of such instabilities is necessary to optimise the operation of fusion experiments and of future fusion power plants. Two models have been developed to simulate the interaction between energetic ions and Alfvén eigenmodes. One is a bump-on-tail model, of which two versions have been developed: one fully nonlinear and one quasilinear. The quasilinear version has a lower dimensionality of particle phase space than the nonlinear one. Unlike previous similar studies, the bump-on-tail model contains a decorrelation of the wave-particle phase in order to model stochasticity of the system. When the characteristic time scale for macroscopic phase decorrelation is similar to or shorter than the time scale of nonlinear wave-particle dynamics, the nonlinear and the quasilinear descriptions quantitatively agree. A finite phase decorrelation changes the growth rate and the saturation amplitude of the wave mode in systems with an inverted energy distribution around the wave-particle resonance. Analytical expressions for the correction of the growth rate and the saturation amplitude have been derived, which agree well with numerical simulations. A relatively weak phase decorrelation also diminishes frequency chirping events of the eigenmode. The second model is called FOXTAIL, and it has a wider regime of validity than the bump-on-tail model. FOXTAIL is able to simulate systems with multiple eigenmodes, and it includes effects of different individual particle orbits relative to the wave fields. Simulations with FOXTAIL and the nonlinear bump-on-tail model have been compared in order to determine the regimes of validity of the bump-on-tail model quantitatively. Studies of two-mode scenarios confirmed the expected consequences of a fulfillment of the Chirikov criterion for resonance overlap. The influence of ICRH on the eigenmode-energetic ion system has also been studied, showing qualitatively similar effects as seen by the presence of phase decorrelation. Another model, describing the efficiency of fast wave current drive, has been developed in order to study the influence of passive components close to the antenna, in which currents can be induced by the antenna generated wave field. It was found that the directivity of the launched wave, averaged over model parameters, was lowered by the presence of passive components in general, except for low values of the single pass damping of the wave, where the directivity was slightly increased, but reversed in the toroidal direction. / De framtida fusionskraftverken baserade på magnetisk inneslutning kommer att hantera plasmor som oundvikligen innehåller energetiska (icke-termiska) partiklar. Dessa partiklar kommer exempelvis från fusionsreaktioner eller från externa uppvärmningsmekanismer av plasmat. Ensembler av energetiska joner kan excitera egenmoder i Alfvén-frekvensområdet i en sådan utsträckning att de resulterande vågfälten omfördelar de energetiska jonerna i rummet, och potentiellt slungar ut jonerna ur plasmat. Omfördelningen av joner kan orsaka en väsentligen minskad uppvärmningseffekt. Det är nödvändigt att förstå dynamiken hos denna typ av instabilitet för att kunna optimera verkningsgraden hos experiment och hos framtida fusionskraftverk. Två modeller har utvecklats för att simulera interaktionen mellan energetiska joner och Alfvén-egenmoder. Den första är en bump-on-tail-modell, av vilken två versioner har utvecklats: en fullt icke-linjär och en kvasi-linjär. I den kvasi-linjära versionen har partiklarnas fasrum en lägre dimensionalitet än i den icke-linjära versionen. Till skillnad från tidigare liknande studier innehåller denna bump-on-tail-modell en dekorrelation av våg-partikelfasen för att modellera stokasticitet hos systemet. När den karakteristiska tidsskalan för makroskopisk fasdekorrelation är ungefär samma som eller kortare än tidsskalan för icke-linjär våg-partikeldynamik så stämmer den icke-linjära och den kvasi-linjära beskrivningen överens kvantitativt. En ändlig fasdekorrelation förändrar vågmodens tillväxthastighet och satureringsamplitud i system med en inverterad energifördelning omkring våg-partikelresonansen. Analytiska uttryck för korrektionen av tillväxthastigheten och satureringsamplituden har härletts, vilka stämmer väl överens med numeriska simuleringar. En relativt svag fasdekorrelation försvagar även "frequency chirping events" (snabba frekvensskiftningar i korttids-Fourier-transformen av egenmodens amplitudutveckling) hos egenmoden. Den andra modellen, kallad FOXTAIL, har ett mycket bredare giltighetsområde än bump-on-tail-modellen. FOXTAIL kan simulera system med flera egenmoder, och den inkluderar effekter av olika enskilda partikelbanor relativt vågfälten. Simuleringar med FOXTAIL och med bump-on-tail-modellen har jämförts för att kvantitativt bestämma bump-on-tail-modellens giltighetsområde. Studier av scenarier med två egenmoder bekräftar de förväntade effekterna av när Chirikov-kriteriet för resonansöverlapp uppfylls. Även inflytandet av ICRH på dynamiken mellan egenmoder och energetiska joner har studerats, vilket har visat kvalitativt liknande effekter som har observerats i närvaron av fasdekorrelation. En annan modell, vilken beskriver effektiviteten hos "fast wave current drive" (strömdrivning med snabba magnetosoniska vågor), har utvecklats för att studera inflytandet av passiva komponenter nära antennen, i vilka strömmar kan induceras av vågfälten som genereras av antennen. Det visades att den utskickade vågens direktivitet, medelvärdesbildat över modellparametrar, generellt sett minskade vid närvaron av passiva komponenter, förutom vid låg "sinlge pass damping" (dämpning av vågen vid propagering genom hela plasmat), då direktiviteten istället ökade något, men bytte tecken i toroidal riktning. / <p>QC 20160927</p>
|
135 |
The dynamics of Alfvén eigenmodes excited by energetic ions in toroidal plasmasTholerus, Emmi January 2015 (has links)
Experiments for the development of fusion power that are based on magnetic confinement deal with plasmas that inevitably contain energetic (non-thermal) particles. These particles come e.g. from fusion reactions or from external heating of the plasma. Ensembles of energetic ions can excite plasma waves in the Alfvén frequency range to such an extent that the resulting wave fields redistribute the energetic ions, and potentially eject them from the plasma. The redistribution of ions may cause a substantial reduction heating efficiency, and it may damage the inner walls and other components of the vessel. Understanding the dynamics of such instabilities is necessary to optimise the operation of fusion experiments and of future fusion power plants. A Monte Carlo model that describes the nonlinear wave-particle dynamics in a toroidal plasma has been developed to study the excitation of the abovementioned instabilities. A decorrelation of the wave-particle phase is added in order to model stochasticity of the system (e.g. due to collisions between particles). Based on the nonlinear description with added phase decorrelation, a quasilinear version of the model has been developed, where the phase decorrelation has been replaced by a quasilinear diffusion coefficient in particle energy. When the characteristic time scale for macroscopic phase decorrelation becomes similar to or shorter than the time scales of nonlinear wave-particle dynamics, the two descriptions quantitatively agree on a macroscopic level. The quasilinear model is typically less computationally demanding than the nonlinear model, since it has a lower dimensionality of phase space. In the presented studies, several effects on the macroscopic wave-particle dynamics by the presence of phase decorrelation have been theoretically and numerically analysed, e.g. effects on the growth and saturation of the wave amplitude, and on the so called frequency chirping events with associated hole-clump pair formation in particle phase space. Several effects coming from structures of the energy distribution of particles around the wave-particle resonance has also been studied. / <p>QC 20150330</p>
|
136 |
Numerical modeling of auroral processesVedin, Jörgen January 2007 (has links)
One of the most conspicuous problems in space physics for the last decades has been to theoretically describe how the large parallel electric fields on auroral field lines can be generated. There is strong observational evidence of such electric fields, and stationary theory supports the need for electric fields accelerating electrons to the ionosphere where they generate auroras. However, dynamic models have not been able to reproduce these electric fields. This thesis sheds some light on this incompatibility and shows that the missing ingredient in previous dynamic models is a correct description of the electron temperature. As the electrons accelerate towards the ionosphere, their velocity along the magnetic field line will increase. In the converging magnetic field lines, the mirror force will convert much of the parallel velocity into perpendicular velocity. The result of the acceleration and mirroring will be a velocity distribution with a significantly higher temperature in the auroral acceleration region than above. The enhanced temperature corresponds to strong electron pressure gradients that balance the parallel electric fields. Thus, in regions with electron acceleration along converging magnetic field lines, the electron temperature increase is a fundamental process and must be included in any model that aims to describe the build up of parallel electric fields. The development of such a model has been hampered by the difficulty to describe the temperature variation. This thesis shows that a local equation of state cannot be used, but the electron temperature variations must be descibed as a nonlocal response to the state of the auroral flux tube. The nonlocal response can be accomplished by the particle-fluid model presented in this thesis. This new dynamic model is a combination of a fluid model and a Particle-In-Cell (PIC) model and results in large parallel electric fields consistent with in-situ observations.
|
137 |
Characterization of γ-rays at MASTBlom, Erik January 2019 (has links)
The γ-ray characterizing possibility of the neutron collimated flux monitor (in short, Neutron Camera) at the Mega Ampere Spherical Tokamak (MAST) is explored. Typically used to monitor neutron emission, the Neutron Camera has excellent neutron/γ-ray discrimination properties and thus presents the opportunity to measure spatially and temporally resolved γ-ray emission - a possibility of an additional fusion diagnostics method with already existing equipment. An Online Data Analysis (ODA) code was used to analyze the data on γ-rays from several plasma discharges with similar plasma parameters. A high statistics temporal distribution of the γ-ray emission and a lower statistics spatial distribution were analyzed. However, the low energy resolution and range for the Neutron Camera γ-ray measurements revealed few conclusive results on the origin of the higher energy γ-rays. Detection systems with higher energy resolution and range are suggested for an extensive analysis of γ-ray emission at MAST Upgrade.
|
138 |
Simulations of a back scatter time of flight neutron spectrometer for the purpose of concept testing at the NESSA facility.Eriksson, Benjamin January 2018 (has links)
A back scatter time of flight neutron spectrometer consisting of two scintillation detectors is simulated in Geant4 to examine whether it is possible to perform a proof of concept test at the NESSA facility at Uppsala University. An efficiency of ε = 2.45 · 10^-6 is shown to be large enough for a neutron generator intensity of 1.9 · 10^10 neutrons per second to achieve a minimal required signal count rate of 10000 counts per hour. A corresponding full width at half maximum energy resolution of 8.3% is found. The background in one of the detectors is simulated in MCNP and found to be a factor 62 larger than the signal for a given set of pulse height thresholds in the detectors. Measures to increase the signal to background ratio are discussed and an outlook for future work concerning testing the spectrometer at NESSA is presented.
|
139 |
Modeling the complex ejecta on 2017 September 6-9 with WSA-ENLIL+Cone and EUHFORIAWerner, Anita Linnéa Elisabeth January 2018 (has links)
Three CMEs which erupted on 2017 Sep 4 and 6 underwent mutual interaction before reaching Earth on Sep 6-9, where it gave rise to a complex and unexpectedly geoeffective structure as detected by WIND at L1. The spacecraft first observed an interplanetary (IP) shock on Sep 6 followed by a turbulent sheath. The leg of the CME flux rope is detected on Sep 7, in which clear signatures of a shock-in-a-cloud can be distinguished, coming from the third CME which propagated into the preceding flux rope. We model the source of this complex ejecta with WSA-ENLIL+Cone and EUHFORIA to assess and compare the overall performance for interacting CMEs as opposed to single CME events. We find that following the conventional algorithm for determination of input parameters give large deviation in the event prediction at L1. The overestimated density of the IP shock 1 is due to the way of implementation of the magnetogram in WSA model. Excluding the slow CME from the input leads to even larger deviation. The prediction of IP shock 1 drastically improves by introducing of a customized density enhancement factor (dcld) based on coronagraph image observations. This novel approach, is simple and accessible, and could be applied to improve the forecast for fast, undisturbed CMEs. The deviation in the prediction of IP shock 2 comes from its interaction with the low proton temperature environment of the preceding magnetic cloud, giving rise to an expansion of the shock front. Additionally, the properties of the background solar wind plasma have been preconditioned by passage of the previous IP shock. This was confirmed from the kilometric type II radio burst emission following the eruption of the third CME. The propagation profile of this CME implies an almost non-existent deceleration in the interplanetary medium, in contrast to the expected CME deceleration due to interaction with the background plasma. In summary, this study presents clear indications that magnetic interaction must be taken into account to reliably forecast multiple CME events. Preconditioning of previous CMEs must also be considered in more depth, and ultimately requires a realistic, time-dependent model of the ambient solar wind which responds well to propagating shock waves. Models in space physics presents us with the perfect tools for understanding not only the physical processes that the simplified models can predict, but perhaps more importantly, help us begin to understand what the models fail to predict.
|
140 |
Europa's Hydrogen Corona in a Large Set of HST Lyman-Alpha ImagesBergman, Sofia January 2017 (has links)
Far-ultraviolet (FUV) spectral images of Jupiter's moon Europa were obtained by the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) on 20 occasions between the years 1999 and 2015. In this thesis these data are analyzed to look for Lyman-alpha emissions from a hydrogen corona. This hydrogen corona was recently discovered in absorption, also from HST Lyman-alpha images but with Europa in transit of Jupiter, and the aim of this study is to confirm the existence of the corona also in emission. Europa's thin atmosphere is dominated by molecular oxygen, mainly produced by radiolysis and sputtering of the icy surface. Atomic hydrogen, the main target for this study, is produced by sputtering from the surface and the dissociation of H2 and H2O. It quickly escapes the gravity of Europa. To study the hydrogen corona in the spectral STIS images the data need to be processed to remove the other Lyman-alpha contributions to the image. These other contributions include emissions from the geocorona, emissions from the interplanetary medium (IPM), dark current in the detector and sunlight reflected from the surface of Europa. To estimate the contribution to the image from the hydrogen corona, a basic model of the expected emissions from the corona is developed. By fitting this model to the processed STIS data values of the hydrogen density and the surface Lyman-alpha albedo of the moon are obtained. The results confirm the presence of a hydrogen corona, with varying densities between the different observations but generally about twice as large as the results from the previous study. The uncertainty for the results is however large and there is a clear correlation between hydrogen density and background level in the image, for which the reason is poorly understood. No hemispheric variability or connections to the true anomaly of the moon are found, but the hydrogen density seems to be increasing during the time of the observations. The results for the albedo is consistent with previous results, indicating a lower albedo on the leading than on the trailing hemisphere.
|
Page generated in 0.0754 seconds