Spelling suggestions: "subject:"fuzzy cosphere"" "subject:"fuzzy biophere""
1 |
Field Theory on the q-Deformed Fuzzy Sphere IH. Grosse, J. Madore, H. Steinacker, Harold.Steinacker@physik.uni-muenchen.de 30 May 2000 (has links)
No description available.
|
2 |
Sistemas curvos de grafeno e esferas fuzzySilva, Deigivan da 07 March 2017 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-11T13:46:47Z
No. of bitstreams: 1
arquivototal.pdf: 4626287 bytes, checksum: 422f70b41a38fd74eb6520e392f6d65b (MD5) / Made available in DSpace on 2017-09-11T13:46:47Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 4626287 bytes, checksum: 422f70b41a38fd74eb6520e392f6d65b (MD5)
Previous issue date: 2017-03-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we developed a complete study on the relativistic Landau model and
non-commutative geometry, the latter was derived from level projection, in order to
describe curved graphene systems. In developing of the theory, we address the problem
of the eigenvalues from the relativistic Dirac-Landau operador on the sphere
with a magnetic monopole in its center. The relativistic fuzzy spheres are introduced
using the eigenstates of the relativistic Landau levels and we compare it with
non-relativistic cases. Under mass deformation, the fuzzy spheres relative to the
relativistic symmetric Landau levels change their sizes, however zero-modes there
are no variation of size for the corresponding fuzzy sphere. Consecutively we verify
that the relativistic Landau model and non-relativistic system of Pauli-Schr odinger
are related by gauge transformation SU(2). And nally, the application of the
whole theoretical graphene's framework show a simmetric spectrum with respect to
its zero energy, and it maintains itself under mass deformation. On the other hand,
the in
uence of the mass parameters M 6= 0 on the four fuzzy spheres (two for
each valley) is such that, if n 6= 0, two of them are enlarged and the other two are
diminished, but for n = 0 the fuzzy spheres (at M) do not change their sizes. / Neste trabalho, desenvolvemos um estudo completo do modelo de Landau relativ
stico e da geometria n~ao-comutativa, esta ultima derivada a partir da proje c~ao
de n vel, a m de descrever sistemas curvos de grafeno. No desenvolvimento da teoria,
abordamos o problema de autovalores do operador Dirac-Landau relativ stico
sobre uma esfera com um monopolo magn etico em seu centro. As esferas fuzzy
relativ sticas s~ao introduzidas usando-se os autoestados dos n veis de Landau relativ
sticos e uma compara c~ao e feita com os casos n~ao-relativ sticos. Sob deforma c~ao
da massa, as esferas fuzzy correspondentes a n veis de Landau relativ sticos sim etricos
modi cam seus tamanhos, mas para modos-zero n~ao h a varia c~ao do tamanho para
a esfera fuzzy correspondente. Em sequ^encia veri ca-se que o modelo de Landau relativ
stico e o sistema n~ao-relativ stico de Pauli-Schr odinger est~ao relacionados por
uma transforma c~ao de gauge SU(2). Finalmente, a aplica c~ao de todo o esse arcabou
co te orico no grafeno, mostra que seu espectro e sim etrico com respeito a energia
zero, e mant em-se mesmo sob deforma c~ao da massa. Por outro lado, a in
u^encia do
par^ametro de massa M 6= 0 nas quatro esferas fuzzy (2 para cada vale) e tal que, se
n 6= 0, duas delas aumentam e as outras duas diminuem, mas para n = 0 as esferas
fuzzy (em M) n~ao mudam seus tamanhos
|
Page generated in 0.0501 seconds