• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 8
  • 7
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geometria de fibrados não-comutativos

Castro, Gilles Gonçalves de January 2005 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas. Programa de Pós-graduação em Matemática e Computação Científica. / Made available in DSpace on 2013-07-16T00:03:25Z (GMT). No. of bitstreams: 1 211809.pdf: 868077 bytes, checksum: b599f46ac2594568a69058de1360d19f (MD5) / Neste trabalho iremos generalizar o conceito de fibrados principais para o contexto não- comutativo, onde o papel do grupo estrutural será dado por um grupo quantico. Para isso, utilizaremos o conceito de extensões de Hopf-Galois. Revisaremos alguns resultados da teoria classica de fibrados principais e mostraremos resultados análogos no caso não-comutativo. Também generalizaremos os conceitos de fibrado vetorial associado e fibrado de referenciais.
2

\"Evoluções discretas em sistemas quânticos com coordenadas não-comutativas\" / Discrete evolutions in quantum systems with noncommutative coordinates

Martins, Andrey Gomes 11 August 2006 (has links)
Estudamos a Mecânica Quântica não-relativística de sistemas físicos caracterizados pela presença de um grau de liberdade extra, que não comuta com a coordenada temporal. Na linguagem da Geometria Não-Comutativa, tratamos de sistemas descritos por uma álgebra da forma F(Q) X \"A IND.\"teta\"\"(R X \"S POT.1\"), onde F(Q) é a álgebra de funções sobre o espaço de configurações usual \"Q\" e \"A IND.\"teta\"\"(R X \"S POT.1\") é uma deformação de F(R X \"S POT.1\"), conhecida como cilindro não-comutativo. Do ponto de vista geométrico, os geradores do cilindro não-comutativo correspondem à coordenada temporal e a uma coordenada espacial (extra) compacta, em analogia com o caso das teorias do tipo Kaluza-Klein. Mostramos que, como resultado da não-comutatividade entre o tempo e a dimensão extra, a evolução temporal dos sistemas descritos por F(Q) X \"A_t(R X S 1) é discretizada. Ao desenvolver a teoria de espalhamento para sistemas definidos nesse espaço-tempo, verificamos o aparecimento de um efeito inexistente no caso usual: transições entre um estado \"in\" com energia \"E IND.\"alfa\"\" e um estado \"out\" com energia \"E IND.\"beta\"\" (diferente de \"E IND.\"alfa\"\") passam a ser possíveis. Mais especificamente, transições serão possíveis sempre que \"E IND.\"beta\" -\" E IND.\"alfa\" = 2\"pi\"/\"teta\"n, com n \'PERTENCE A\' aos inteiros. As conseqüências desse fato são investigadas de maneira qualitativa, no caso específico de uma barreira uni-dimensional do tipo delta. Essa análise é baseada na aproximação de Born para a matriz de transição / We study the nonrelativistic Quantum Mechanics of physical systems characterized F(Q) X \"A IND.\"teta\"\"(R X \"S POT.1\"), by the presence of an extra degree of freedom which does not commute with the time coordinate. In the language of Noncommutative Geometry, we deal with systems described by an algebra of the form F(Q) X \"A IND.\"teta\"\"(R X \"S POT.1\"),, where F(Q) is the algebra of functions over the usual con¯guration space \"Q\" e \"A IND.\"teta\"\"(R X\"S POT.1\") is a deformation of F(R X \"S POT.1\"), known as noncommutative cylinder. From a geometric viewpoint, the generators of the noncommutative cylinder correspond to the time coordinate and to an extra compact spatial coordinate, just like in Kaluza-Klein theories. We show that because of the noncommutativity between the time coordinate and the extra degree of freedom, the time evolution of systems described by F(Q) X \"A_t(R X S 1) is discretized. We develop the scattering theory for such systems, and verify the presence of a new e®ect: transitions from an in state with energy \"E IND.\"alfa\"\" and an out state with energy \"E IND.\"beta\"\" (diferente de \"E IND.\"alfa\"\") are now allowed, in contrast to the usual case. In fact, transitions take place whenever \"E IND.\"beta\" -\" E IND.\"alfa\" = 2\"pi\"/\"teta\"n,, with n \'PERTENCE A\'. The consequences of this result are investigated in the case of a one-dimensional delta barrier. Our analysis is based on the Born approximation for the transition matrix.
3

Estruturas de Poisson não comutativas / Noncommutative Poisson structures.

Orseli, Marcos Alexandre Laudelino 27 February 2019 (has links)
Introduzimos o conceito de estrutura de Poisson não comutativa em álgebras associativas e mostra como este conceito se relaciona com o caso clássico, quando a álgebra em questão é a álgebra de funções em uma variedade de Poisson. Mostramos como quocientes simpléticos, não necessariamente suaves, fornecem exemplos de estruturas de Poisson não comutativas. / We introduce the concept of noncommutative Poisson structure on associative algebras and shows how this concept is related to the classical case, that is, the algebra under study is the algebra of functions on a Poisson manifold. We also show how symplectic quotients, not necessarily smooth, provides examples of noncommutative Poisson structures.
4

Sistemas curvos de grafeno e esferas fuzzy

Silva, Deigivan da 07 March 2017 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-11T13:46:47Z No. of bitstreams: 1 arquivototal.pdf: 4626287 bytes, checksum: 422f70b41a38fd74eb6520e392f6d65b (MD5) / Made available in DSpace on 2017-09-11T13:46:47Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 4626287 bytes, checksum: 422f70b41a38fd74eb6520e392f6d65b (MD5) Previous issue date: 2017-03-07 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we developed a complete study on the relativistic Landau model and non-commutative geometry, the latter was derived from level projection, in order to describe curved graphene systems. In developing of the theory, we address the problem of the eigenvalues from the relativistic Dirac-Landau operador on the sphere with a magnetic monopole in its center. The relativistic fuzzy spheres are introduced using the eigenstates of the relativistic Landau levels and we compare it with non-relativistic cases. Under mass deformation, the fuzzy spheres relative to the relativistic symmetric Landau levels change their sizes, however zero-modes there are no variation of size for the corresponding fuzzy sphere. Consecutively we verify that the relativistic Landau model and non-relativistic system of Pauli-Schr odinger are related by gauge transformation SU(2). And nally, the application of the whole theoretical graphene's framework show a simmetric spectrum with respect to its zero energy, and it maintains itself under mass deformation. On the other hand, the in uence of the mass parameters M 6= 0 on the four fuzzy spheres (two for each valley) is such that, if n 6= 0, two of them are enlarged and the other two are diminished, but for n = 0 the fuzzy spheres (at M) do not change their sizes. / Neste trabalho, desenvolvemos um estudo completo do modelo de Landau relativ stico e da geometria n~ao-comutativa, esta ultima derivada a partir da proje c~ao de n vel, a m de descrever sistemas curvos de grafeno. No desenvolvimento da teoria, abordamos o problema de autovalores do operador Dirac-Landau relativ stico sobre uma esfera com um monopolo magn etico em seu centro. As esferas fuzzy relativ sticas s~ao introduzidas usando-se os autoestados dos n veis de Landau relativ sticos e uma compara c~ao e feita com os casos n~ao-relativ sticos. Sob deforma c~ao da massa, as esferas fuzzy correspondentes a n veis de Landau relativ sticos sim etricos modi cam seus tamanhos, mas para modos-zero n~ao h a varia c~ao do tamanho para a esfera fuzzy correspondente. Em sequ^encia veri ca-se que o modelo de Landau relativ stico e o sistema n~ao-relativ stico de Pauli-Schr odinger est~ao relacionados por uma transforma c~ao de gauge SU(2). Finalmente, a aplica c~ao de todo o esse arcabou co te orico no grafeno, mostra que seu espectro e sim etrico com respeito a energia zero, e mant em-se mesmo sob deforma c~ao da massa. Por outro lado, a in u^encia do par^ametro de massa M 6= 0 nas quatro esferas fuzzy (2 para cada vale) e tal que, se n 6= 0, duas delas aumentam e as outras duas diminuem, mas para n = 0 as esferas fuzzy (em M) n~ao mudam seus tamanhos
5

\"Evoluções discretas em sistemas quânticos com coordenadas não-comutativas\" / Discrete evolutions in quantum systems with noncommutative coordinates

Andrey Gomes Martins 11 August 2006 (has links)
Estudamos a Mecânica Quântica não-relativística de sistemas físicos caracterizados pela presença de um grau de liberdade extra, que não comuta com a coordenada temporal. Na linguagem da Geometria Não-Comutativa, tratamos de sistemas descritos por uma álgebra da forma F(Q) X \"A IND.\"teta\"\"(R X \"S POT.1\"), onde F(Q) é a álgebra de funções sobre o espaço de configurações usual \"Q\" e \"A IND.\"teta\"\"(R X \"S POT.1\") é uma deformação de F(R X \"S POT.1\"), conhecida como cilindro não-comutativo. Do ponto de vista geométrico, os geradores do cilindro não-comutativo correspondem à coordenada temporal e a uma coordenada espacial (extra) compacta, em analogia com o caso das teorias do tipo Kaluza-Klein. Mostramos que, como resultado da não-comutatividade entre o tempo e a dimensão extra, a evolução temporal dos sistemas descritos por F(Q) X \"A_t(R X S 1) é discretizada. Ao desenvolver a teoria de espalhamento para sistemas definidos nesse espaço-tempo, verificamos o aparecimento de um efeito inexistente no caso usual: transições entre um estado \"in\" com energia \"E IND.\"alfa\"\" e um estado \"out\" com energia \"E IND.\"beta\"\" (diferente de \"E IND.\"alfa\"\") passam a ser possíveis. Mais especificamente, transições serão possíveis sempre que \"E IND.\"beta\" -\" E IND.\"alfa\" = 2\"pi\"/\"teta\"n, com n \'PERTENCE A\' aos inteiros. As conseqüências desse fato são investigadas de maneira qualitativa, no caso específico de uma barreira uni-dimensional do tipo delta. Essa análise é baseada na aproximação de Born para a matriz de transição / We study the nonrelativistic Quantum Mechanics of physical systems characterized F(Q) X \"A IND.\"teta\"\"(R X \"S POT.1\"), by the presence of an extra degree of freedom which does not commute with the time coordinate. In the language of Noncommutative Geometry, we deal with systems described by an algebra of the form F(Q) X \"A IND.\"teta\"\"(R X \"S POT.1\"),, where F(Q) is the algebra of functions over the usual con¯guration space \"Q\" e \"A IND.\"teta\"\"(R X\"S POT.1\") is a deformation of F(R X \"S POT.1\"), known as noncommutative cylinder. From a geometric viewpoint, the generators of the noncommutative cylinder correspond to the time coordinate and to an extra compact spatial coordinate, just like in Kaluza-Klein theories. We show that because of the noncommutativity between the time coordinate and the extra degree of freedom, the time evolution of systems described by F(Q) X \"A_t(R X S 1) is discretized. We develop the scattering theory for such systems, and verify the presence of a new e®ect: transitions from an in state with energy \"E IND.\"alfa\"\" and an out state with energy \"E IND.\"beta\"\" (diferente de \"E IND.\"alfa\"\") are now allowed, in contrast to the usual case. In fact, transitions take place whenever \"E IND.\"beta\" -\" E IND.\"alfa\" = 2\"pi\"/\"teta\"n,, with n \'PERTENCE A\'. The consequences of this result are investigated in the case of a one-dimensional delta barrier. Our analysis is based on the Born approximation for the transition matrix.
6

O caráter de Chern-Connes para C*-sistemas dinâmicos calculado em algumas álgebras de operadores pseudodiferenciais / The C*-dynamical system Chern-Connes character computed in some pseudodifferential operators algebras

Dias, David Pires 11 April 2008 (has links)
Dado um C$^*$-sistema dinâmico $(A, G, \\alpha)$ define-se um homomorfismo, denominado de caráter de Chern-Connes, que leva elementos de $K_0(A) \\oplus K_1(A)$, grupos de K-teoria da C$^*$-álgebra $A$, em $H_{\\mathbb}^*(G)$, anel da cohomologia real de deRham do grupo de Lie $G$. Utilizando essa definição, nós calculamos explicitamente esse homomorfismo para os exemplos $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ e $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, onde $\\overline{\\Psi_^0(M)}$ denota a C$^*$-álgebra gerada pelos operadores pseudodiferenciais clássicos de ordem zero da variedade $M$ e $\\alpha$ a ação de conjugação pela representação regular (translações). / Given a C$^*$-dynamical system $(A, G, \\alpha)$ one defines a homomorphism, called the Chern-Connes character, that take an element in $K_0(A) \\oplus K_1(A)$, the K-theory groups of the C$^*$-algebra $A$, and maps it into $H_{\\mathbb}^*(G)$, the real deRham cohomology ring of $G$. We explictly compute this homomorphism for the examples $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ and $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, where $\\overline{\\Psi_^0(M)}$ denotes the C$^*$-álgebra gene\\-rated by the classical pseudodifferential operators of zero order in the manifold $M$ and $\\alpha$ the action of conjugation by the regular representation (translations).
7

O caráter de Chern-Connes para C*-sistemas dinâmicos calculado em algumas álgebras de operadores pseudodiferenciais / The C*-dynamical system Chern-Connes character computed in some pseudodifferential operators algebras

David Pires Dias 11 April 2008 (has links)
Dado um C$^*$-sistema dinâmico $(A, G, \\alpha)$ define-se um homomorfismo, denominado de caráter de Chern-Connes, que leva elementos de $K_0(A) \\oplus K_1(A)$, grupos de K-teoria da C$^*$-álgebra $A$, em $H_{\\mathbb}^*(G)$, anel da cohomologia real de deRham do grupo de Lie $G$. Utilizando essa definição, nós calculamos explicitamente esse homomorfismo para os exemplos $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ e $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, onde $\\overline{\\Psi_^0(M)}$ denota a C$^*$-álgebra gerada pelos operadores pseudodiferenciais clássicos de ordem zero da variedade $M$ e $\\alpha$ a ação de conjugação pela representação regular (translações). / Given a C$^*$-dynamical system $(A, G, \\alpha)$ one defines a homomorphism, called the Chern-Connes character, that take an element in $K_0(A) \\oplus K_1(A)$, the K-theory groups of the C$^*$-algebra $A$, and maps it into $H_{\\mathbb}^*(G)$, the real deRham cohomology ring of $G$. We explictly compute this homomorphism for the examples $(\\overline{\\Psi_^0(S^1)}, S^1, \\alpha)$ and $(\\overline{\\Psi_^0(S^2)}, SO(3), \\alpha)$, where $\\overline{\\Psi_^0(M)}$ denotes the C$^*$-álgebra gene\\-rated by the classical pseudodifferential operators of zero order in the manifold $M$ and $\\alpha$ the action of conjugation by the regular representation (translations).
8

Some considerations about field theories in commutative and noncommutative spaces

Nikoofard, Vahid 30 June 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-12-22T13:25:11Z No. of bitstreams: 1 vahidnikoofard.pdf: 794368 bytes, checksum: 26feb8d15d2757f79f8d7dfb69b610c2 (MD5) / Approved for entry into archive by Diamantino Mayra (mayra.diamantino@ufjf.edu.br) on 2017-01-31T10:20:21Z (GMT) No. of bitstreams: 1 vahidnikoofard.pdf: 794368 bytes, checksum: 26feb8d15d2757f79f8d7dfb69b610c2 (MD5) / Made available in DSpace on 2017-01-31T10:20:21Z (GMT). No. of bitstreams: 1 vahidnikoofard.pdf: 794368 bytes, checksum: 26feb8d15d2757f79f8d7dfb69b610c2 (MD5) Previous issue date: 2015-06-30 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Esta tese é composta por assuntos distintos entre si de teorias quânticas de campos onde alguns deles são descritos em espaços não-comutativos (NC). Em primeiro lugar, analisamos a dinâmica de uma partícula livre sobre uma 2-esfera e através da dinâmica das suas equações de movimento, obtivemos as perturbações NCs neste espaço de fase. Este modelo sugere uma origem para o Zitterbewegung do elétron. Depois disso, consideramos umaversãoNCdasegundaleideNewtonparaestemodelo, quefoiobtidocomestecenário geométrico aplicado a este modelo. Em seguida, discutimos um formalismo alternativo relacionado à não-comutatividade chamado DFR onde o parâmetro NC é considerado uma coordenada e demonstramos exatamente que ela tem obrigatoriamente um momento conjugado neste espaço de fase DFR, diferentemente do que alguns autores da atual literatura sobre DFR afirmam. No próximo assunto, usando o formalismo de solda que, em poucaspalavras,colocapartículascomquiralidadesopostasnomesmomultipleto,soldamos algumas versões NCs de modelos bem conhecidos como modelos de Schwinger quirais e modelos (anti) auto duais no espaço-tempo de Minkowski estendido. Em outro assunto estudado aqui, também construímos a versão NC do modelo de Jackiw-Pi com um grupo de calibre arbitrário e usamos o mapeamento bem conhecido de Seiberg-Witten para obter este modelo NC em termos de variáveis comutativos. Finalmente, utilizamos o formalismo de campos e anticampos (ou método BV) para construir a ação de Batalin-Vilkovisky (BV) do modelo Jackiw-Pi estendido e após o prEntendiocedimento de fixação de calibre chegamos a uma ação completa, pronta para quantização. / This thesis is composed of distinct aspects of quantum field theories where some of them are described in noncommutative (NC) spaces. Firstly, we have analyzed the dynamics of a free particle over a 2-sphere and through the dynamics of the equations of motion we have derived its NC perturbations in the phase-space. This model suggests an origin for Zitterbewegung feature of the electron. After that we have considered the NC version of Newton’s second law for this model, which was obtained with the geometricalscenarioappliedtothismodel. Thenwehavediscussedtheso-calledDoplicher– Fredenhagen–Roberts (DFR) alternative formalism concerning noncommutativity where the NC parameter has a coordinate role and we showed exactly that it has a conjugated momentum in the DFR phase-space, differently of what some authors of the current DFR-literature claims. In the next issue, using the soldering formalism which, in few words, put opposite chiral particles in the same multiplet, we have soldered some NC versions of well known models like the chiral Schwinger model and (anti)self dual models in the extended Minkowski spacetime. Changing the subject, we have constructed the NC spacetime version of Jackiw-Pi model with an arbitrary gauge group and we used the well known Seiberg-Witten map to obtain the NC model expressed in terms of commutative variables. Finally, we have used the field-antifield (or BV method) formalism to construct the Batalin-Vilkovisky (BV) action of the extended Jackiw-Pi model and after the gauge fixing procedure we have arrived at a quantized-ready action for this model.

Page generated in 0.0669 seconds