• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uncertainty Models For Vector Based Functional Curves And Assessing The Reliability Of G-band

Kurtar, Ahmet Kursat 01 December 2006 (has links) (PDF)
This study is about uncertainty medelling for vector features in geographic information systems (GIS). It has mainly two objectives which are about the band models used for uncertainty modelling . The first one is the assessment of accuracy of GBand model, which is the latest and the most complex uncertainty handling model for vector features. Some simulations and tests are applied to test the reliability of accuracy of G-Band with comparing Chrisman&rsquo / s epsilon band model, which is the most frequently used band model among the others. The tests are realized with two cases, testing with digitized lines by people and testing with randomly created lines with gaussian random number generator algorithm. So, the results can be examined in two different ways. The second aim of this thesis is development of band models for functional special curves. These functional curves are based on some mathematical models. Specifications of these curves are defined in the structure of Geographic Markup Language (GML) of Open GIS Consortium (OGC). They are arc, arc string, clothoid and cubic spline. Uncertainty for arc by three coordinates, arc string and cubic spline are modelled by G-Band. Arc by center point and clothoid are modelled by epsilon band. In this thesis, a commercial GIS API, GeoKIT is used to create the band geometries of functional curves, to perform some simulations and tests to make the comparison and to present the developed functionality as a desktop application. Band geomeiv tries are developed in the structure of API model which enable the functionality. Secondly, Matlab 2006a is used for technical computing to calculate multivariate normal cumulative density function (mvncdf) to be used in analyses and simulations.
2

Modelling And Analyzing The Uncertainty Propagation In Vector-based Network Structures In Gis

Yarkinoglu Gucuk, Oya 01 September 2007 (has links) (PDF)
Uncertainty is a quantitative attribute that represents the difference between reality and representation of reality. Uncertainty analysis and error propagation modeling reveals the propagation of input error through output. Main objective of this thesis is to model the uncertainty and its propagation for dependent line segments considering positional correlation. The model is implemented as a plug-in, called Propagated Band Model (PBM) Plug-in, to a commercial desktop application, GeoKIT Explorer. Implementation of the model is divided into two parts. In the first one, model is applied to each line segment of the selected network, separately. In the second one, error in each segment is transmitted through the line segments from the start node to the end node of the network. Outcomes are then compared with the results of the G-Band model which is the latest uncertainty model for vector features. To comment on similarities and differences of the outcomes, implementation is handled for two different cases. In the first case, users digitize the selected road network. In the second case recently developed software called Interactive Drawer (ID) is used to allow user to define a new network and simulate this network through Monte Carlo Simulation Method. PBM Plug-in is designed to accept the outputs of these implementation cases as an input, as well as generating and visualizing the uncertainty bands of the given line network. Developed implementations and functionality are basically for expressing the importance and effectiveness of uncertainty handling in vector based geometric features, especially for line segments which construct a network.
3

Systèmes de mesure intégré sub-millimétrique en bande G (140-220 GHz) en technologie BiCMOS 55 nm / Integrated System Measuring submillimeter in G band (140-220 GHz) in technology BiCMOS 55 nm

Aouimeur, Walid 16 February 2018 (has links)
Les applications microélectroniques telles que les communications sans fil ou les radars nécessitent des traitements d’information avec des débits ou des résolutions de plus en plus élevés. Cela implique de travailler à des fréquences millimétriques voir sub-millimétriques. Grâce aux progrès des technologies silicium, des circuits intégrés travaillant dans les gammes de fréquences millimétriques émergent mais souffrent d'un manque de solution de caractérisation complète. Par exemple, il n’existe à ce jour aucun analyseur vectoriel de réseaux commercial qui soit capable de mesurer les paramètres S dans la bande G (140-220 GHz) en 4 ports. La caractérisation classique des circuits millimétriques en n ports (avec n>2) consiste alors à utiliser un analyseur vectoriel de réseaux 2 ports et à adapter les autres ports non utilisés à 50Ω. Par permutation circulaire, on arrive ainsi à extraire la matrice S d’un dispositif à n ports (avec n>2). Ce protocole de mesure est très long et délicat à mettre en place car il nécessite d’une part un investissement en appareil de mesure très couteux aux fréquences millimétriques et d’autre part de mettre en œuvre des méthodes de calibrage et de de-embedding précises et dédiées.Le travail développé dans le cadre de cette thèse a visé à intégrer dans la puce, des systèmes de caractérisation petits signaux (paramètres S) au plus près du Dispositif Sous Test (DST). Le fait d’être au plus près du DST permet de réduire les pertes d’insertion, de réduire l’amplitude des vecteurs d’erreurs et donc les erreurs résiduelles après calibrage. Par ailleurs, il est possible de mieux contrôler la puissance du signal envoyé et de considérer des méthodes de calibrage utilisant des charges intégrées, ce qui permet de réduire le temps de traitement et le cout. La technologie utilisée est la technologie SiGe BiCMOS 55 nm développée par la société STMicroelectronics, technologie particulièrement adaptée aux circuits en bande millimétrique. La solution développée dans cette thèse consiste à connecter le wafer avec des pointes de mesure qui amènent un signal hyperfréquence balayant le spectre 35-55 GHz. Une fois dans la puce, ce signal hyperfréquence est quadruplé en fréquence et amplifié afin d’atteindre des niveaux de puissance suffisant (bon rapport Signal/bruit) dans la bande G aux bornes du DST. Les paramètres de réflexion (S11 et S22) sont ensuite extraits grâce à deux coupleurs très directifs, placés sur l’entrée et la sortie du DST respectivement. Les sorties du coupleur sont ensuite ramenées en basse fréquence (0.5GHz < IF < 2.4 GHz) par l’intermédiaire de mélangeurs de fréquence.L’approche choisie est argumentée en se basant sur une étude des systèmes de mesures existant présentée dans la première partie de ce manuscrit. Puis la conception et la caractérisation de chacun des blocs composant le système sont détaillées : le quadrupleur de fréquence en bande G (constitué d’un doubleur de fréquence en bande W cascadé avec un doubleur de fréquence en bande G), le transfert switch en bande G permettant de commuter entre l’entrée et la sortie du DST, le coupleur directif à ondes lentes, les mélangeurs permettant de ramener les mesures en basse fréquence, etc…. Une fois tous les différents blocs présentés, le manuscrit aborde les deux systèmes de mesure conçus. Un premier système un port a été développé pour valider cette approche. Le second système conçu permet de mesurer un DST à deux ports (HBT). Ce second système conserve l’architecture hétérodyne du premier, intégrant en plus un transfert switch en bande G qui dirige le signal incident vers l’un des deux ports du DST. / Microelectronic applications such as wireless communications, radar or space detections require higher data rate resolutions, implying the use of millimeter wave and submillimeter frequencies. Thanks to the silicon technologies improvement, some microelectronic circuits are emerging working in the frequency range of 140-220 GHz (G-band) but they suffer from a lack of complete characterization tools involving costly investment. For example, there is currently no commercial vectorial network analyser (VNA) that can measure S parameters in the 4-ports G-band. The classical characterization of millimeter wave circuits in n ports (with n> 2) consists in using a vectorial analyzer of 2-ports networks and matching the other unused ports to 50Ω. By circular permutation, one thus manages to extract the S matrix from a device with n ports (with n> 2). This set up induces very long and difficult measurements and it requires on the one hand some very expensive measuring equipment at millimeter frequencies and on the other hand to implement accurate and dedicated calibration and de-embedding methods.Therefore, the work developed into this PhD study aimed to integrate in the die the measurement systems that would measure small signals "S-parameters" of the device under test (DUT). Being closer to the DST makes it possible to reduce the insertion losses, to reduce the amplitude of the error vectors and thus the residual errors after calibration. Moreover, it is possible to better control the power of the signal sent and to consider calibration methods using integrated loads, which reduces the time and cost processing. The technology used is the SiGe BiCMOS 55 nm technology developed by STMicroelectronics, a technology dedicated to RF and millimeter wave’s circuits.The system developed is a 1-port system. The solution developed consists on connecting the wafer with some probes and driving it with an external signal that spans the 35-55 GHz band. Once into the die, this signal is then quadrupled in frequency and amplified to reach good power level in G band at the DUT inputs. Some S-parameters (S11 and S22) are extracted from the DUT thanks to some very directive couplers designed respectively at the input and at the output of the DUT. The outputs of the couplers are then converted to low frequencies (IF =0.5-2.4 GHz) through passive frequency mixers.In a first part of the thesis manuscript, the way to work is argued, supported by a study of the state of the art concerning the measurement systems. Then, design and characterization of each blocks of the system are detailed: the frequency quadrupler in G band (composed of a W band frequency doubler, followed with a G band frequency doubler), the fully integrated transfer switch in G-band allowing driving the millimeter waves signal to the DUT input or to the DUT output, the directive couplers based on the slow wave lines, the frequency mixers used to bring back the results in base band frequency, etc… All the different blocks detailed, the measurement systems can be introduced. A first system, a one-port measurement system, has been designed as a proof of concept. Once the approach validated, a second system, two-ports measurement system, has been developed presenting an heterodyne architecture and a transfer switch in G band driving the input signal toward the DUT input or output.
4

Obrazová analýza mitotických chromosomů / Digital image analysis of mitotic chromosomes

Danielová, Tereza January 2014 (has links)
This master’s thesis is focused on digital image analysis of mitotic chromosomes. It deals with the design of the processing of digital images - from image preprocessing to clasification of each chromosomes, including testing on a set of images. This work introduces used cytogenetic methods, that are used to visualize chromosomes. In its practical part describes morphology operations and clasification procedure. Classification of the chomosomes was divided into 5 groups (A-G). All algorithms were created in the MATLAB program.

Page generated in 0.0444 seconds