• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intégration sur silicium de solutions complètes de caractérisation en puissance de transistor HBT en technologie BiCMOS 55 nm à des fréquences au-delà de 130 GHz / Integration of in situ solutions for power characterization of HBT transistor in 55 nm BiCMOS technology beyond 130 GHz

Bossuet, Alice 20 March 2017 (has links)
L’évolution des technologies silicium rend aujourd’hui possible le développement de nombreuses applications dans les domaines millimétriques tels que pour les systèmes de communication à très haut débit. Cette évolution se caractérise par une croissance des performances en fréquence des transistors disponibles dans ces technologies et nécessite la mise en place d’outils de mesure performants pour valider la modélisation et l’optimisation technologique de ces dispositifs. La caractérisation load-pull est une méthode incontournable pour modéliser le comportement en fort signal des transistors. En bande G [140-220 GHz], l’environnement de mesure classiquement disponible n’a plus les performances requises pour ce type de caractérisation compte tenu des pertes dans les accès au dispositif sous test. Ce travail de thèse a pour objectif de lever ce verrou en proposant de réaliser, en technologie BiCMOS 55 nm de STMicroelectronics, un banc load-pull entièrement intégré sur silicium afin d’être au plus près du dispositif à caractériser. Le mémoire est articulé autour de quatre chapitres. Le premier chapitre présente l’état de l’art de l’instrumentation actuellement disponible pour la caractérisation en puissance aux fréquences millimétriques et leurs limitations. Le second chapitre détaille la conception et la caractérisation des blocs constituant le banc intégré : le tuner et la source MMW de puissance. Le troisième chapitre décrit la réalisation et les performances du détecteur de puissance. Enfin, le quatrième chapitre présente le banc complet et son application à la caractérisation en bande G d’un dispositif bipolaire disponible dans la technologie BiCMOS 55 nm. / The evolution of silicon technologies now makes possible the development of many applications in the millimeter areas such as high speed communication systems. The evolution of these silicon technologies is characterized by the increase of the transistor performances with the frequency that requires the development of efficient radiofrequency measurement tools for accurate modeling of active components or the optimization of integrated circuits. In this framework, the load-pull characterization is an essential method to model the behavior of transistors in nonlinear region. In the G Band, the classical measurement environment typically available has not the required performance for this kind of characterization due to the losses in the accesses to the device under test. The aim of this thesis is to lift this lock by offering, in the STMicroelectronics BiCMOS 55 nm technology, a fully integrated load-pull characterization bench on silicon in order to be as close as possible to the device to characterize. The thesis manuscript is divided into four chapters. The first chapter presents the state of the art of the currently available instrumentation for power characterization at millimeter wave frequencies band and their limitations, which leads to the G band characterization bench specifications. The second chapter details the design and characterization of the mains blocks constituting the integrated bench: the tuner and the mmw power source. The third chapter present the design and characterization of the power detector. Finally, the fourth chapter presents the complete bench and its application with the G band load-pull characterization of a transistor bipolar device.
2

Systèmes de mesure intégré sub-millimétrique en bande G (140-220 GHz) en technologie BiCMOS 55 nm / Integrated System Measuring submillimeter in G band (140-220 GHz) in technology BiCMOS 55 nm

Aouimeur, Walid 16 February 2018 (has links)
Les applications microélectroniques telles que les communications sans fil ou les radars nécessitent des traitements d’information avec des débits ou des résolutions de plus en plus élevés. Cela implique de travailler à des fréquences millimétriques voir sub-millimétriques. Grâce aux progrès des technologies silicium, des circuits intégrés travaillant dans les gammes de fréquences millimétriques émergent mais souffrent d'un manque de solution de caractérisation complète. Par exemple, il n’existe à ce jour aucun analyseur vectoriel de réseaux commercial qui soit capable de mesurer les paramètres S dans la bande G (140-220 GHz) en 4 ports. La caractérisation classique des circuits millimétriques en n ports (avec n>2) consiste alors à utiliser un analyseur vectoriel de réseaux 2 ports et à adapter les autres ports non utilisés à 50Ω. Par permutation circulaire, on arrive ainsi à extraire la matrice S d’un dispositif à n ports (avec n>2). Ce protocole de mesure est très long et délicat à mettre en place car il nécessite d’une part un investissement en appareil de mesure très couteux aux fréquences millimétriques et d’autre part de mettre en œuvre des méthodes de calibrage et de de-embedding précises et dédiées.Le travail développé dans le cadre de cette thèse a visé à intégrer dans la puce, des systèmes de caractérisation petits signaux (paramètres S) au plus près du Dispositif Sous Test (DST). Le fait d’être au plus près du DST permet de réduire les pertes d’insertion, de réduire l’amplitude des vecteurs d’erreurs et donc les erreurs résiduelles après calibrage. Par ailleurs, il est possible de mieux contrôler la puissance du signal envoyé et de considérer des méthodes de calibrage utilisant des charges intégrées, ce qui permet de réduire le temps de traitement et le cout. La technologie utilisée est la technologie SiGe BiCMOS 55 nm développée par la société STMicroelectronics, technologie particulièrement adaptée aux circuits en bande millimétrique. La solution développée dans cette thèse consiste à connecter le wafer avec des pointes de mesure qui amènent un signal hyperfréquence balayant le spectre 35-55 GHz. Une fois dans la puce, ce signal hyperfréquence est quadruplé en fréquence et amplifié afin d’atteindre des niveaux de puissance suffisant (bon rapport Signal/bruit) dans la bande G aux bornes du DST. Les paramètres de réflexion (S11 et S22) sont ensuite extraits grâce à deux coupleurs très directifs, placés sur l’entrée et la sortie du DST respectivement. Les sorties du coupleur sont ensuite ramenées en basse fréquence (0.5GHz < IF < 2.4 GHz) par l’intermédiaire de mélangeurs de fréquence.L’approche choisie est argumentée en se basant sur une étude des systèmes de mesures existant présentée dans la première partie de ce manuscrit. Puis la conception et la caractérisation de chacun des blocs composant le système sont détaillées : le quadrupleur de fréquence en bande G (constitué d’un doubleur de fréquence en bande W cascadé avec un doubleur de fréquence en bande G), le transfert switch en bande G permettant de commuter entre l’entrée et la sortie du DST, le coupleur directif à ondes lentes, les mélangeurs permettant de ramener les mesures en basse fréquence, etc…. Une fois tous les différents blocs présentés, le manuscrit aborde les deux systèmes de mesure conçus. Un premier système un port a été développé pour valider cette approche. Le second système conçu permet de mesurer un DST à deux ports (HBT). Ce second système conserve l’architecture hétérodyne du premier, intégrant en plus un transfert switch en bande G qui dirige le signal incident vers l’un des deux ports du DST. / Microelectronic applications such as wireless communications, radar or space detections require higher data rate resolutions, implying the use of millimeter wave and submillimeter frequencies. Thanks to the silicon technologies improvement, some microelectronic circuits are emerging working in the frequency range of 140-220 GHz (G-band) but they suffer from a lack of complete characterization tools involving costly investment. For example, there is currently no commercial vectorial network analyser (VNA) that can measure S parameters in the 4-ports G-band. The classical characterization of millimeter wave circuits in n ports (with n> 2) consists in using a vectorial analyzer of 2-ports networks and matching the other unused ports to 50Ω. By circular permutation, one thus manages to extract the S matrix from a device with n ports (with n> 2). This set up induces very long and difficult measurements and it requires on the one hand some very expensive measuring equipment at millimeter frequencies and on the other hand to implement accurate and dedicated calibration and de-embedding methods.Therefore, the work developed into this PhD study aimed to integrate in the die the measurement systems that would measure small signals "S-parameters" of the device under test (DUT). Being closer to the DST makes it possible to reduce the insertion losses, to reduce the amplitude of the error vectors and thus the residual errors after calibration. Moreover, it is possible to better control the power of the signal sent and to consider calibration methods using integrated loads, which reduces the time and cost processing. The technology used is the SiGe BiCMOS 55 nm technology developed by STMicroelectronics, a technology dedicated to RF and millimeter wave’s circuits.The system developed is a 1-port system. The solution developed consists on connecting the wafer with some probes and driving it with an external signal that spans the 35-55 GHz band. Once into the die, this signal is then quadrupled in frequency and amplified to reach good power level in G band at the DUT inputs. Some S-parameters (S11 and S22) are extracted from the DUT thanks to some very directive couplers designed respectively at the input and at the output of the DUT. The outputs of the couplers are then converted to low frequencies (IF =0.5-2.4 GHz) through passive frequency mixers.In a first part of the thesis manuscript, the way to work is argued, supported by a study of the state of the art concerning the measurement systems. Then, design and characterization of each blocks of the system are detailed: the frequency quadrupler in G band (composed of a W band frequency doubler, followed with a G band frequency doubler), the fully integrated transfer switch in G-band allowing driving the millimeter waves signal to the DUT input or to the DUT output, the directive couplers based on the slow wave lines, the frequency mixers used to bring back the results in base band frequency, etc… All the different blocks detailed, the measurement systems can be introduced. A first system, a one-port measurement system, has been designed as a proof of concept. Once the approach validated, a second system, two-ports measurement system, has been developed presenting an heterodyne architecture and a transfer switch in G band driving the input signal toward the DUT input or output.

Page generated in 0.0444 seconds