• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On index theorem for symplectic orbifolds

Fedosov, Boris, Schulze, Bert-Wolfgang, Tarkhanov, Nikolai January 2003 (has links)
We give an explicit construction of the trace on the algebra of quantum observables on a symplectic orbifold and propose an index formula.
2

"Corporate Governance and Default Risk"

Vateva, Tzveta 20 October 2014 (has links)
No description available.
3

Hodnocení finanční situace podniku a návrhy na její zlepšení / Evaluation of the Financial Situation in the Firm and Proposals to its Improvement

Vicenová, Lenka January 2010 (has links)
This diploma thesis deals with economic health of the company JAKOS, a.s. in years 2005–2008. There was used selected methods of the financial analysis. Based on recognized facts I propose measures which should result in the improvement of financial situation of the company.
4

Teorida de G-índice e grau de aplicações G-equivariantes / G-index theory and degree of G-equivariant maps

Neyra, Norbil Leodan Cordova 07 May 2010 (has links)
Antes da publicação do trabalho An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems\"de Fadell e Husseini [20], haviam sido apenas considerados índices numéricos de G-espaços, nos casos G =\'Z IND. 2\' e G um grupo finito. No entanto, tais índices numéricos são obviamente insuficientes no caso de grupos mais complexos, como por exemplo a 1-esfera \'S POT. 1\'. Neste contexto, Fadell e Husseini introduziram o chamado Indice cohomológico de valor ideal: a cada G-espaço X paracompacto, eles associaram um ideal \'Ind POT. G\' (X;K) do anel de cohomología H*(BG;K), onde a cohomologia de Cech H* é considerada com coeficientes em um corpo K e BG é o espaço classificante do grupo G. Além disso, Fadell e Husseini associaram a este ideal o Índice cohomológico de valor numérico, o qual é definido como sendo a dimensão do K-espaço vetorial obtido do quociente entre o anel H*(BG;K) e o ideal \'Ind POT. G\' (X;K). O objetivo principal deste trabalho é apresentar um estudo detalhado deste índice e utilizá-lo no estudo dos resultados sobre grau de aplicações G-equivariantes provados por Hara em \"The degree of equivariant maps\"[24] / Before the appearance of the paper An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems\"of Fadell and Husseini [20], had been considered numerical indices of G-spaces, when G = \'Z IND. 2\' and when G is a finite group. However, such numerical indices are obviously insufficient in the case of groups more complexes, for example, G =\'S POT 1\'. In this context Fadell andHusseini, introduced the called valued-ideal cohomological index: to every paracompact G-space X they associated an ideal \'Ind POT. G\' (X,K) of the cohomology ring H*(BG;K), where the Cech cohomology H* is considered with coefficients in a field K and BG is the classifying space of the group G. Moreover, they associated to this ideal the numerical valued cohomological index, that is, the dimension of K-vector space obtained by the quotient between the ring H*(BG;K) and the ideal \'Ind POT. G\' (X,K). The main objective of this work is to present a detailed study of this index and use such index on the study of results on degree of equivariant maps proved by Hara in his paper The degree of equivariant maps\"[24]
5

Teorida de G-índice e grau de aplicações G-equivariantes / G-index theory and degree of G-equivariant maps

Norbil Leodan Cordova Neyra 07 May 2010 (has links)
Antes da publicação do trabalho An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems\"de Fadell e Husseini [20], haviam sido apenas considerados índices numéricos de G-espaços, nos casos G =\'Z IND. 2\' e G um grupo finito. No entanto, tais índices numéricos são obviamente insuficientes no caso de grupos mais complexos, como por exemplo a 1-esfera \'S POT. 1\'. Neste contexto, Fadell e Husseini introduziram o chamado Indice cohomológico de valor ideal: a cada G-espaço X paracompacto, eles associaram um ideal \'Ind POT. G\' (X;K) do anel de cohomología H*(BG;K), onde a cohomologia de Cech H* é considerada com coeficientes em um corpo K e BG é o espaço classificante do grupo G. Além disso, Fadell e Husseini associaram a este ideal o Índice cohomológico de valor numérico, o qual é definido como sendo a dimensão do K-espaço vetorial obtido do quociente entre o anel H*(BG;K) e o ideal \'Ind POT. G\' (X;K). O objetivo principal deste trabalho é apresentar um estudo detalhado deste índice e utilizá-lo no estudo dos resultados sobre grau de aplicações G-equivariantes provados por Hara em \"The degree of equivariant maps\"[24] / Before the appearance of the paper An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems\"of Fadell and Husseini [20], had been considered numerical indices of G-spaces, when G = \'Z IND. 2\' and when G is a finite group. However, such numerical indices are obviously insufficient in the case of groups more complexes, for example, G =\'S POT 1\'. In this context Fadell andHusseini, introduced the called valued-ideal cohomological index: to every paracompact G-space X they associated an ideal \'Ind POT. G\' (X,K) of the cohomology ring H*(BG;K), where the Cech cohomology H* is considered with coefficients in a field K and BG is the classifying space of the group G. Moreover, they associated to this ideal the numerical valued cohomological index, that is, the dimension of K-vector space obtained by the quotient between the ring H*(BG;K) and the ideal \'Ind POT. G\' (X,K). The main objective of this work is to present a detailed study of this index and use such index on the study of results on degree of equivariant maps proved by Hara in his paper The degree of equivariant maps\"[24]
6

Versões do teorema de Tverberg e aplicações

Poncio, Carlos Henrique Felicio 25 February 2016 (has links)
Submitted by Livia Mello (liviacmello@yahoo.com.br) on 2016-10-05T14:40:49Z No. of bitstreams: 1 DissCHFP.pdf: 1216039 bytes, checksum: e21e062b0283d2bfe6ec436442e824a5 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:23:38Z (GMT) No. of bitstreams: 1 DissCHFP.pdf: 1216039 bytes, checksum: e21e062b0283d2bfe6ec436442e824a5 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-20T19:23:43Z (GMT) No. of bitstreams: 1 DissCHFP.pdf: 1216039 bytes, checksum: e21e062b0283d2bfe6ec436442e824a5 (MD5) / Made available in DSpace on 2016-10-20T19:23:50Z (GMT). No. of bitstreams: 1 DissCHFP.pdf: 1216039 bytes, checksum: e21e062b0283d2bfe6ec436442e824a5 (MD5) Previous issue date: 2016-02-25 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / In this work, we will use topological methods in combinatorics and geometry to present a proof of the topological Tverberg theorem and a result about many Tverberg partitions. / O objetivo principal desta dissertação consiste em desenvolver um estudo detalhado de métodos topológicos em combinatória e geometria visando apresentar uma prova da versão topológica do teorema de Tverberg e de um teorema sobre a quantidade de partições de Tverberg. / FAPESP: 2015/01264-7

Page generated in 0.0322 seconds