• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Insights into the regulation of the DEAH-box helicase Prp43p through its interactions with three G-patch proteins

Hennigan, Jennifer Ann 11 July 2014 (has links)
The RNA helicase Prp43p is one of the few members of the DEAH-box helicase family that is known to operate in more than one cellular process in Saccharomyces cerevisiae. With roles in ribosome biogenesis and pre-mRNA splicing, Prp43p may be important in maintaining a communication conduit between these two pathways. Our studies provide insights into how Prp43p function is regulated through the use of three cofactors, Ntr1p, Pfa1p, and Gno1p, all of which interact with Prp43p at different steps of pre-mRNA splicing or ribosome biogenesis. Each cofactor contains a unique G-patch domain and our data show that they associate with Prp43p in a mutually exclusive manner. A strong growth defect and RNA processing phenotypes are seen upon overexpression of Pfa1p due to the dominance of Pfa1p interaction with Prp43p. Moreover, excess Pfa1p precludes Prp43p from interacting with either 35S pre-rRNA or U6 snRNA, indicating this one cofactor can negatively regulate Prp43p recruitment into ribosome biogenesis and pre-mRNA splicing pathways, respectively. We have determined that Ntr1p and Gno1p are able to compete with one another for Prp43p occupancy. Similar to Ntr1p, we show that the G-patch domain of Gno1p contributes to its association with Prp43p. To further understand pathway specificity of Prp43p, we characterized conditional prp43 alleles with mutations C-terminal to the conserved RecA domains of Prp43p. These novel alleles affect pre-mRNA splicing and ribosome biogenesis, though none are mutually exclusive. Multiple prp43 alleles are deficient in tri-snRNP formation, a previously uncharacterized phenotype in prp43 mutants. The majority of our prp43 mutants display varying rRNA defects, with some alleles impacting ribosome biogenesis more severely or moderately than known prp43 ATPase mutants. To correlate the processing defects seen in each allele, we have determined the extent of association of the mutants with each G-patch protein. Altogether, our data support a working model for Prp43p in which its substrate specificity, activation, and cellular distribution is coordinated through the efforts of the three G-patch proteins in yeast and sheds light on potential mechanisms of general DExH/D helicase function and regulation. / text
2

Étude structurale et fonctionnelle de la régulation de l’hélicase Prp43 / Structural and functional study of the regulation of the helicase Prp43

Robert-Paganin, Julien 02 October 2014 (has links)
Les hélicases à ARN de la famille DEAH/RHA sont impliquées dans la plupart des processus essentiels à la vie tels que l'épissage, la biogenèse des ribosomes, la réplication, la transcription ou encore la détection d’ARN viraux. Ces enzymes sont capables de catalyser la dissociation de duplexes d'ARN, la réorganisation de structures secondaires ou de remodeler des complexes ARN-protéines. L'hélicase DEAH/RHA Prp43 présente la particularité d'être bifonctionnelle. Prp43 est impliquée dans l'épissage des Pré-ARNm, où elle assure le recyclage du spliceosome et du lasso, mais aussi dans la biogenèse des ribosomes où elle est impliquée dans la maturation des deux sous-unités. Prp43 est activée et régulée par cinq partenaires protéiques : Ntr1, Gno1, Pfa1, RBM5 et GPATCH2. Ces partenaires protéiques présentent tous un domaine G-patch et sont capables de stimuler les activités hélicase et ATPase de Prp43. La structure cristallographique de Prp43 en complexe avec l'ADP a été résolue au laboratoire. Cette structure a mis en évidence un mode de fixation du nucléotide inédit chez les autres hélicases, notamment au niveau de la base qui s'empile entre la phénylalanine 357 (F357) du domaine RecA2 et l'arginine 159 (R159) du domaine RecA1. Les déterminants de l'activation de Prp43 par les protéines à domaine G-patch demeurent méconnus. Dans ce travail, nous avons cherché à déterminer quel était le rôle de l’empilement de la base dans l’activation de Prp43. Nous présentons ici plusieurs structures cristallographiques de Prp43 en complexe avec tous les nucléotides diphosphates(NDP) et les désoxynucléotides triphosphates (dNDP). Ces structures ont permis de conclure qu'il y avait des différences dans l’empilement de la base selon le (d)NDP considéré. Des dosages d'activité NTPase de Prp43 avec et sans son partenaire protéique Pfa1 montrent que lorsque la base ne s'empile pas avec la F357 et la R159, l'activité de l'enzyme n'est pas correctement régulée par son partenaire protéique. Les dosages d’activité enzymatique sur les mutants ponctuels F357A et R159A révèlent que le résidu F357 permet de moduler l’activité de Prp43. Tous ces résultats nous ont permis de mettre en évidence un modèle de la régulation de Prp43 par les protéines à domaines G-patch et d'expliquer l'importance du mode de fixation de la base à l'enzyme dans cette régulation. / RNA helicases from the DEAH/RHA family are involved in most of essential processes of life such as pre-mRNA splicing, ribosome biogenesis, replication, transcription or viral RNA sensing. These enzymes are able to catalyze RNA unwinding, secondary structures reorganization or RNA-protein complexes remodeling. The DEAH/RHA helicase Prp43 is remarkable because it is bifunctional, as it is involved both in pre-mRNA splicing, where it is responsible of spliceosome and lariat recycling and in the biogenesis of the two ribosomal subunits. Prp43 is activated by five protein partners: Ntr1, Gno1, Pfa1, RBM5 and GPATCH2. These protein partners all possess a G-patch domain and are able to stimulate helicase and ATPase activity of Prp43. The structure of Prp43 in complex with ADP has been solved by X-ray crystallography. The structure reveals that the nucleotide is bound to the enzyme in a novel mode that has never been observed in other known helicase structures. The specific feature of this binding mode is the base, stacked between phenylalanine (F357) from RecA2 domain and an arginine (R159) from RecA1 domain. Features of the activation of Prp43 by G-patch proteins are unclear. In this work, we investigated the role of base stacking in the activation of Prp43. We present several structures of Prp43 bound to all the nucleotide diphosphates (NDP) and deoxynucleotide diphosphates (dNTP). These results indicate that there are differences in stacking according to the (d)NDP bound to the enzyme. NTPase activity assays revealed that when stacking is weakened, Prp43 activity cannot be properly regulated by its protein partner Pfa1. Moreover, point mutations F357A and R159A show that stacking of F357 permits to modulate Prp43 activity. All these results allow us to propose a model of NTPase activity activation of Prp43 by G-patch proteins and to highlight the importance of base stacking in this regulation.
3

CHARACTERIZATION OF G-PATCH MOTIF CONTRIBUTION TO PRP43 FUNCTION IN THE PRE-MESSENGER RNA SPLICING AND RIBOSOMAL RNA BIOGENESIS PATHWAYS

Banerjee, Daipayan 01 January 2013 (has links)
The DExD/H-box protein Prp43 is essential for two biological processes: nucleoplasmic pre-mRNA splicing and nucleolar rRNA maturation. The biological basis for the temporal and spatial regulation of Prp43 remains elusive. The Spp382/Ntr1, Sqs1/Pfa1 and Pxr1/Gno1 G-patch proteins bind to and activate the Prp43 DExD/H box-helicase in pre-mRNA splicing (Spp382) and rRNA processing (Sqs1, Pxr1). These Prp43-interacting proteins each contain the G-patch domain, a conserved sequence of ~48 amino acids that includes 6 highly conserved glycine (G) residues. Five annotated G-patch proteins in baker’s yeast (i.e., Spp382, Pxr1, Spp2, Sqs1 and Ylr271) and with the possible exception of the uncharacterized Ylr271 protein, all are associated with ribonucleoprotein (RNP) complexes. Understanding the role of G-patch proteins in modulating the DExD/H box protein Prp43 biological function was the motivation of this thesis. The G-patch domain has been proposed as a protein-protein or a protein-RNA interaction module for RNP proteins. This study found that the three Prp43-associated G-patch domains interact with Prp43 in a yeast 2 hybrid (Y2H) assay but differ in apparent relative affinities. Using a systemic Y2H analysis, I identified the conserved Winged-helix (WH) domain in Prp43 as a major binding site for G-patch motif. Intriguingly, removal of the non-essential N-terminal domain (NTD) of Prp43 (amino acids 2-94), greatly improves G-patch binding, suggesting that the NTD may play a role in modulating enzyme activity by the G-patch effectors. I identify a second site within the Pxr1 that strongly binds Prp43 but, unlike the G-patch, is dispensable for Pxr1 function in vivo. By constructing chimeric proteins, I demonstrated that individual G-patch peptides differ in the ability to reconstitute Spp382 and Pxr1 function in support of pre-mRNA splicing and rRNA biogenesis, respectively. Through amino acid sequence comparisons and selective mutagenesis I identified several residues within the G-patch motif critical for Prp43-stimulated pre-mRNA splicing without greatly altering its ability to bind Prp43. These data lead me to propose that the G-patch motif is not a simple Prp43 binding interface but may contribute more directly to substrate selection or Prp43 enzyme activation in the biologically distinct pre-mRNA splicing and rRNA processing pathways.

Page generated in 0.0349 seconds