Spelling suggestions: "subject:"proteincoupled"" "subject:"probescoupled""
1 |
G protein-coupled receptors; discovery of new human members and analyses of the entire repertoires in human, mouse and rat /Gloriam, David E., January 2006 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2006. / Härtill 6 uppsatser. Med sammanfattning på svenska.
|
2 |
The conformation of the β-ionone ring region of the chromophore of rhodopsin, in the dark and meta-I photostatesSharples, Jonathan M. January 2003 (has links)
No description available.
|
3 |
Bivalent ligands for the β₂ adrenergic receptorNikbin, Nikzad January 2003 (has links)
No description available.
|
4 |
The gene repertoire of G protein-coupled receptors : new genes, phylogeny, and evolution /Bjarnadóttir, Þóra Kristín, January 2006 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2006. / Härtill 5 uppsatser.
|
5 |
Développement d’outils pour l'étude de la signalisation médiée par les récepteurs couplés aux protéines G, basés sur l'utilisation d'anticorps à domaine unique de lama / Development of tools for the study of G protein-coupled receptor-mediated signaling based on the use of lama single domain antibodiesMailhac, Camille 18 October 2017 (has links)
L'objectif principal de ma thèse était de développer de nouvelles technologies et des outils pour l’étude de l’activation des récepteurs couplés aux protéines G (GPCR).À la surface de la cellule se trouve une multitude de récepteurs qui jouent un rôle critique dans la communication cellule-cellule, dont les GPCR, une famille de récepteur utilisant les protéines G intracellulaires pour transmettre leurs signaux. Le ciblage de ces récepteurs à des fins thérapeutique est innovant et très prometteur. Mais à ce jour seuls quelques médicaments ciblant les GPCR ont été mis sur le marché, en partie en raison d'un manque d'outils permettant le suivi de leur action sur les cellules natives.L’objectif de cette thèse est donc de développer des tests simples pour suivre l’activation de n’importe quel GPCR. Pour développer ce type de test, nous avons décidé d'utiliser des fragments d'anticorps appelés nanobodies. Les anticorps sont des protéines du sang produites en réponse à un antigène spécifique qui sont capable de le neutraliser. Les nanobodies correspondent au domaine variable de certains anticorps de camélidés. En raison de leur faible taille (13 kDa) et de leur site de liaison à l'antigène réduit, les nanobodies se lient souvent à des cavités et présentent une grande sensibilité aux changements de conformation de l'antigène. / The main objective of my thesis was to develop technologies and tools to study activation of G protein-coupled receptors (GPCRs).The cell surface is displaying a multitude of receptors, who play critical roles in cell-cell communication. Among them, GPCRs represent a large family relying on the use of intracellular G proteins for their signaling. Targeting these receptors for therapies is very promising and innovative. So far, only few new drugs have been put on the market, partly due to a lack of tools enabling the follow-up of their action on native cells.The aim of this thesis is thus to develop simple assays to study activation of any GPCRs. To develop this kind of test, we used antibody fragments called nanobodies. Antibodies are blood protein produced in response to and counteracting a specific antigen. Nanobodies correspond to antibody fragments derived from the variable domain of a special class of camelid antibodies. Because of their small size (13 kDa) and reduced antigen binding site, nanobodies often bind cavities and show a high sensitivity to antigen conformational changes.
|
6 |
Desensitisation of the pituitary vasopressin receptor : development of a model system to assess involvement of G protein-coupled receptor kinase 5.Gatehouse, Michelle January 2008 (has links)
The hypothalamic peptide arginine vasopressin (AVP) is an important regulator of adrenocorticotropin (ACTH) release from the anterior pituitary. AVP stimulates ACTH secretion from corticotroph cells by activating the pituitary vasopressin receptor (V1b-R), a member of the G protein-coupled receptor (GPCR) family. In vitro, repeated stimulus of anterior pituitary cells with AVP results in rapid desensitisation. The aim of this research was to develop methods needed to use RNA interference (RNAi) to investigate the role of G protein-coupled receptor kinase 5 (GRK5) in this desensitisation process. This required the development of a model system using human embryonic kidney (HEK) 293 cells transfected with the pituitary vasopressin receptor, V1b-R. AVP binding to the V1bR activates the phosphoinositide signalling pathway, leading to production of inositol phosphates (IPs), which can be measured following radiolabelling of cells with myo-[³H]inositol. Stimulation of V1b-R-transfected cells for 15 min with AVP (100nM) increased IP production to 235.5 ± 23.4 % (n=3, p<0.02) of that seen in un-stimulated control cells. Following a 5 minute pre-treatment with 5nM VP, the IP response to stimulation with 100nM VP for 15 min was reduced to 62.8 ± 9.1 % (n=4, p<0.02) of that seen in control cells that were not pre-treated. These data indicate that AVP-desensitisation can be induced and measured in V1bR-transfected HEK293 cells following a brief pre-treatment with a physiological concentration of AVP. This model system will enable RNAi to be used to investigate the role of GRK5 in AVP-desensitisation.
When using RNAi, it is essential to establish that the effects observed are the result of small interfering RNA (siRNA) specific degradation of the target mRNA. Quantitative reverse transcription PCR (qRT-PCR) was used to measure the expression of GRK5 at the mRNA level in HEK293 cells. Human GRK5 mRNA was amplified using qRT-PCR with GRK5 specific primers, providing confirmation that GRK5 is expressed endogenously in HEK293 cells. GRK5 expression studies were carried out to evaluate whether the qRT-PCR methods developed would be suitable to measure knockdown of GRK5 mRNA using RNAi. These experiments were also designed to assess the impact of HEK293 cell culture methods on expression of GRK5. Expression of GRK5 did not vary with passage number (2-26 passages). The GRK5 expression in HEK293 cells that were maintained in culture for 5 days (grown to a confluence of approximately 100%) was 7.4 ± 0.9 fold greater (n=2, p<0.05) than for cells cultured for 3 days (grown to a confluence of approximately 65%). These data indicate that GRK5 expression is affected by HEK293 culture conditions. Furthermore, the results demonstrated that a significant difference in GRK5 expression could be measured in HEK293 cells using qRT-PCR. Therefore the results reported in this thesis provide the basis for future studies utilising RNAi to investigate mechanisms underlying V1b-R desensitisation.
|
7 |
The characterisation of serotonin receptors in the parasitic nematode Ascaris suumBrooman, Julie Elizabeth January 1998 (has links)
No description available.
|
8 |
The Differential Regulation of Subtypes of N-methyl-D-aspartate Receptors in CA1 Hippocampal Neurons by G Protein Coupled ReceptorsYang, Kai 06 December 2012 (has links)
The role of NMDAR subtypes in synaptic plasticity is very controversial, partially caused by the lack of specific GluN2A containing NMDA receptor (GluN2AR) antagonists. Here we took a novel approach to selectively modulate NMDAR subtype activity and investigated its role in the induction of plasticity. Whole cell recording in both acutely isolated CA1 cells and hippocampal slices demonstrated that pituitary adenylate cyclase activating peptide 1 receptors (PAC1 receptors), which are Gαq coupled receptors, selectively recruited Src kinase and enhanced currents mediated by GluN2ARs. In addition, biochemical experiments showed that the activation of PAC1 receptors phosphorylated GluN2ARs specifically. In contrast, vasoactive intestinal peptide receptors (VPAC receptors), which are Gαs coupled receptors, selectively stimulated Fyn kinase, potentiated currents mediated by GluN2B containing NMDARs (GluN2BRs). Furthermore, dopamine D1 receptor activation (another Gαs coupled receptor) specifically phosphorylated GluN2BRs. Interestingly, field recording experiments showed that PAC1 receptor activation lowered the threshold for LTP whilst LTD was enhanced by dopamine D1 receptor activation. In conclusion, the activity of GPCRs can signal through different pathways to selectively modulate absolute contribution of GluN2ARs versus GluN2BRs in CA1 neurons via Src family kinases. Furthurmore, Epac, activated by some Gαs coupled receptors, also modulated NMDAR currents via a PKC/Src dependent pathway, but whether it selectively modulates NMDAR subtypes, and has capacity to change the induction of plasticity, requires further study.
By this means, we can investigate the role of NMDAR subtypes in the direction of synaptic plasticity by selectively modulating the activity of GluN2ARs or GluN2BRs. In addition, based on my work, some interfering peptides and drugs can be designed and used to selectively inhibit the activity of GluN2BRs and GluN2ARs by interrupting Fyn- and Src - mediated signaling cascade respectively. It will provide new candidate drugs for the treatment of some neurological diseases such as Alzheimer disease (AD) and schizophrenia.
|
9 |
Identification of a novel anti-apoptotic protein and characterization of mammalian regulators of G protein signaling (RGSs) in yeastYang, Zhao, 1970- January 2007 (has links)
Regulators of G protein signaling (RGSs) are negative regulators of G protein coupled receptors (GPCRs). Our lab has demonstrated that yeast Saccharomyces cerevisiae is a useful system to study RGS and G protein signaling. Mammalian RGSs can be expressed in yeast and favored to interact with mammalian GPCRs as well. / Based on the observation that human RGS1 causes yeast cell growth arrest, I therefore used RGS1 expressing yeast cells to screen a mouse T cell cDNA library in order to find potential interacting proteins. From the screen, I identified a mouse sphingomyelin synthase 1 (SMS1) cDNA. By using a series of different apoptotic stimuli, such as hydrogen peroxide, osmotic stress, exogenous ceramide and its precursors, high temperature etc., SMS1 expression was found to suppress cell growth arrest and prevent viability decline, indicating that SMS1 represents an anti-apoptotic protein that functions by decreasing the intracellular level of pro-apoptotic ceramide. / Gene analysis further indicated that the SMS1 gene consists of 16 exons spread over a 256kb portion of mouse chromosome 19. It is alternatively spliced to produce 4 different transcripts (SMS1alpha1, SMS1alpha2, SMS1beta and SMS1gamma) and encode 3 different proteins (SMS1alpha, SMS1beta and SMS1gamma). Notably, I found that SMS1beta protein does not interfere with SMS1alpha anti-apoptotic function, although both of these two proteins contain the protein-protein interaction domain, sterile alpha motif (SAM), at their N-terminus. / I also carried out a study to examine GPCR-RGS interactions using the yeast expression system. Our lab had noticed that there was an extra RGS5 related protein that was detected by western blot analysis in the protein extracts prepared from yeast and HEK293 cells expressing RGS5. The size of the band was approximately 2 times the molecular weight of RGS5, indicating the possibility that RGS5 forms a dimer. To further examine this hypothesis, I, therefore, performed a series of experiments, included yeast 2 hybrid assays, to demonstrate that RGS5 does interact with itself. This is the first report that RGS can form a dimer. The implications for this finding are discussed in detail.
|
10 |
The Differential Regulation of Subtypes of N-methyl-D-aspartate Receptors in CA1 Hippocampal Neurons by G Protein Coupled ReceptorsYang, Kai 06 December 2012 (has links)
The role of NMDAR subtypes in synaptic plasticity is very controversial, partially caused by the lack of specific GluN2A containing NMDA receptor (GluN2AR) antagonists. Here we took a novel approach to selectively modulate NMDAR subtype activity and investigated its role in the induction of plasticity. Whole cell recording in both acutely isolated CA1 cells and hippocampal slices demonstrated that pituitary adenylate cyclase activating peptide 1 receptors (PAC1 receptors), which are Gαq coupled receptors, selectively recruited Src kinase and enhanced currents mediated by GluN2ARs. In addition, biochemical experiments showed that the activation of PAC1 receptors phosphorylated GluN2ARs specifically. In contrast, vasoactive intestinal peptide receptors (VPAC receptors), which are Gαs coupled receptors, selectively stimulated Fyn kinase, potentiated currents mediated by GluN2B containing NMDARs (GluN2BRs). Furthermore, dopamine D1 receptor activation (another Gαs coupled receptor) specifically phosphorylated GluN2BRs. Interestingly, field recording experiments showed that PAC1 receptor activation lowered the threshold for LTP whilst LTD was enhanced by dopamine D1 receptor activation. In conclusion, the activity of GPCRs can signal through different pathways to selectively modulate absolute contribution of GluN2ARs versus GluN2BRs in CA1 neurons via Src family kinases. Furthurmore, Epac, activated by some Gαs coupled receptors, also modulated NMDAR currents via a PKC/Src dependent pathway, but whether it selectively modulates NMDAR subtypes, and has capacity to change the induction of plasticity, requires further study.
By this means, we can investigate the role of NMDAR subtypes in the direction of synaptic plasticity by selectively modulating the activity of GluN2ARs or GluN2BRs. In addition, based on my work, some interfering peptides and drugs can be designed and used to selectively inhibit the activity of GluN2BRs and GluN2ARs by interrupting Fyn- and Src - mediated signaling cascade respectively. It will provide new candidate drugs for the treatment of some neurological diseases such as Alzheimer disease (AD) and schizophrenia.
|
Page generated in 0.0618 seconds