1 |
Dietary effects of supplemental plant oils on growth, adipocity, related enzyme activity and fatty acid composition of juvenile cobiaLin, Pei-Chen 15 August 2008 (has links)
This research studied the dietary effect of supplemental plant oils on growth, adiposity and lipid metabolism-related enzyme activity of juvenile cobia. The isonitrogenous and isoenergetic basal diet contained 15% crude lipid, 6% fish oil and 9% supplemental oils. The supplemental oils were varied among 5 dietary treatments, including fish oil (HUFA, n-3)(FO), perilla oil (18:3 n-3)(PE), safflower oil (18:2 n-6)(SA), olive oil (18:1 n-9)(OL), and palm oil (16:0)(PA). Results of the 10-wk feeding trial show that fish fed diet containing palm oil had the highest final weight, and was significant higher than fish fed SA diet. SA group had highest crude lipid concentration. OL group had the least crude protein concentration. PA group had the highest ash concentration. FO group had the highest crude protein and moisture content, the least crude lipid and ash content. Adipocyte density in various, tissues did not vary with time, except the ventral fat depot. Tissue adipocyte density of FO group was the least. Adipocyte density of PE group was higher than FO group, and its mean adipcoyte diameter in dorsal muscle was great than the other groups. Fatty acid synthase (FAS), as measured by specific activity, decreased with times in the PE group. Adipocyte density of SA group the highest of all groups, and its mean adipocyte diameter in dorsal muscle was also the greatest. Adipocyte density in the ventral fat depot of OL group was the highest, and its mean diameter in dorsal muscle was the smallest. Adipocyte density of PA group was only slightly lower than SA group. The tissue acid composition of the cobia was influenced by the supplemental plant oils. Tissue HUFA concentration and n-3/n-6 ratio was decreased, MUFA, PUFA and SAF composition was increased when the plant oils were supplemented. The results show that the supplementation of the plant oils could affect the density , size and tissue distribution of adipocytes, fatty acid synthesis pathway in the liver and tissue fatty acid composition. Feeding the cobia diet containing supplemental safflower or palm oil significantly increased density and cell size of adipocytes in the tissue of the cobia.
|
2 |
Developing Brain of Moderately Hypothyroid Mice Shows Adaptive Changes in the Key Enzymes of Glucose MetabolismPandey, P., Singh, S. K., Trigun, S. K. 01 December 2005 (has links)
This study was undertaken to investigate whether the developing brain adapts at biochemical level against neonatal hypothyroidism, as it does so against a variety of physiological disturbances. A moderate hypothyroid state in mice neonates was induced by supplementing 0.05% methimazole in drinking water to the mothers up to suckling period, and its effect on concerted development of the enzymes regulating metabolic channeling of glucose vis a vis glucose phosphorylating activity were studied. In the brain of control mice, the activity of glucose-6-phosphate dehydrogenase (G6PDH), that channels glucose in biosynthetic route (Pentose phosphate pathway, PPP), increased slightly (∼ 1.3 times) from day1 to 10w age. However, glucose phosphorylating activity and the enzymes that commit glucose for energy production, viz phosphofructokinase1 (PFK1), pyruvate kinase (PK) and lactate dehydrogenase (LDH) showed a progressive postnatal increase to attain their respective adult levels (∼ 5-10 times higher than 1day value) by 3-10w ages of mice. In comparison to the control, in the brain of age matched neonatal hypothyroid mice, glucose phosphorylating activity, G6PDH and PFK1 increased significantly (p<0.001) at day1. Thereafter, though, glucose phosphorylating activity continued to increase up to 1w age and remained static thereafter, G6PDH declined significantly (p<0.001) from 1w onward ages. On the other hand, as PFK1 activity increased significantly up to 10w age (p<0.001), the ratio of G6PDH/PFK1 showed a marked decline from 1w onward ages. PK and LDH also showed increasing trend up to 3w age in the brain of hypothyroid mice pups. The results suggest that a moderate hypothyroid state, during the period of rapid brain growth (day 1-1w age), stimulates all the enzymes that regulate channeling of glucose in both, the energy yielding and biosynthetic paths. However, the later postnatal ages, it modulates these enzymes in a metabolic path dependent manner.
|
3 |
Embryo-toxic effects of lead nitrate of the African catfish Clarias gariepinus (Burchell, 1822)Osman, Alaa Gad El-Karim Mahmoud 04 April 2007 (has links)
Im Rahmen der Studien zur Wirkung von Bleinitrat auf die Embryonalstadien des afrikanischen Welses Clarias gariepinus wurde zunächst der Einfluß der Besamung auf den Härtungsprozess des Chorions untersucht, um die Bedeutung des gehärteten Chorions als Schutzfunktion im Hinblick auf Schadstoffeinwirkung zu klären. Das Studium der Embryonalentwicklung war erforderlich, um das Ausmaß der Änderung der Normalentwicklung unter dem Einfluß von Bleinitrat bewerten zu können. Im Rahmen der toxikologischen Untersuchungen der Wirkung des Bleinitrats auf die Embryonalstadien wurden folgende biologische Marker (Biomarker) betrachtet: Änderungen in der Entwicklung und der Schlüpfrate, morphologische und histologische Änderungen, sowie biochemische Veränderungen (Änderungen von Stoffwechsel-Enzymaktivitäten) und molekulare Veränderungen (Erfassung von DNA-Schädigungen). Die Exposition der besamten Eier mit Bleinitrat führte zu einer Verlängerung der Inkubationszeit und zu starken Mißbildungen. Der Rückgang der Häufigkeiten der Mißbildungen mit der Zeit ließ die Annahme zu, daß die mißgebildeten Embryonen starben. Im Gegensatz zu den morphologischen Mißbildungen wurden histopathologische Effekte nur bei Embryonen gefunden, die den höchsten Dosierungen (300 µg/l und 500 µg/l Bleinitrat) ausgesetzt waren. Nach dem Schlupf war das Muster der Enzymaktivitäten nach Exposition mit Bleinitrat uneinheitlich; die Aktivität von G6PDH nahm zu, die von LDH nahm ab und die von PK zeigte unregelmäßige Fluktuationen. Die Embryonalstadien zeigten signifikante Dosis-abhängige Antworten über die Zeit, da das Ausmaß der DNA-Schädigungen signifikant mit den Bleinitrat Konzentrationen anstieg. Vor dem Schlupf konnten bei den Embryonen nach Bleinitrat Exposition keine Änderungen in den Enzymaktivitäten gefunden werden und nur geringe DNA-Schädigungen, d.h die toxischen Effekte waren sehr gering. Eine Erklärung könnte die schützende Wirkung der Eihülle gegenüber Schadstoffen sein. Die gewählten Biomarker stellen sensitive Detektionsmethoden für Bleinitrat dar. So könnten sie sich als sinnvolle Bioindikatoren für Ägypten erweisen, da dort zunehmend Umweltverschmutzung mit Blei und Bleiakkumulation in Lebensmitteln zu verzeichnen ist. / In order to study the embryo-toxic effects of lead nitrate of the African catfish Clarias gariepinus, we first had to study the effect of fertilization on the hardening process of the chorion to clarify the role of the hardened chorion on the protection of the embryo from the pollutants. Also we had to study the embryonic development of C. gariepinus for providing us with a model for comparison when normal patterns of development are altered due the exposure to lead nitrate. The present toxicological work focuses on lead toxicity in different developmental stages of C. gariepinus considering different biological markers (biomarkers) comprising changes in the development and hatching rate, morphological and histological changes, biochemical changes (alteration of metabolic enzymes activity) and molecular changes (monitoring of DNA damage). Exposure of fertilized eggs to lead nitrate prolonged the incubation period and caused severe morphological malformations. Since the frequencies of the morphological malformations decreased with time, we conclude a lethal impact and selected mortality of abnormal embryos. Unlike the morphological malformation, histopathological changes were only recorded in embryos exposed to the highest dosages (300 µg/l and 500 µg/l lead nitrate). In the post-hatching stages, the patterns of the enzymes activities after lead exposure varied, G6PDH increased, LDH decreased and PK showed fluctuations. Embryonic stages revealed significant dose-related DNA damage response over time, since the degree of DNA damage increased significantly with higher lead concentrations. No specific response in the activities of the selected enzymes and low DNA damage were recorded in the pre-hatching stage after exposure to the lead nitrate doses. This means the lead nitrate had a minute toxic effect on the pre-hatched embryos. We conclude that, low susceptibility in pre-hatching stages is most probably a consequence of the chorion, which seems to protect the embryos from a range of external pollutants. The selected biomarkers were sensitive detection methods for low-level toxicity of lead nitrate. Thus, these are useful tools for biomonitoring, urgently required in Egypt with regard to increasing environmental deposition of lead and bioaccumulation in human food recently observed.
|
Page generated in 0.0189 seconds