• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 230
  • 77
  • 74
  • 30
  • 20
  • 11
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 547
  • 87
  • 53
  • 52
  • 37
  • 36
  • 34
  • 32
  • 31
  • 31
  • 30
  • 29
  • 29
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Efeito modulador da glutationa na liberação de gaba induzida por glutamato em retinas de embrião de galinha

PEREIRA, Tiago de Lima 06 June 2012 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2012-09-21T17:50:58Z No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Dissertacao_EfeitoModuladorGlutationa.pdf: 626376 bytes, checksum: ebe9c9bb1f5309183c38e38ab50116e9 (MD5) / Approved for entry into archive by Ana Rosa Silva(arosa@ufpa.br) on 2012-09-28T13:31:12Z (GMT) No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Dissertacao_EfeitoModuladorGlutationa.pdf: 626376 bytes, checksum: ebe9c9bb1f5309183c38e38ab50116e9 (MD5) / Made available in DSpace on 2012-09-28T13:31:12Z (GMT). No. of bitstreams: 2 license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Dissertacao_EfeitoModuladorGlutationa.pdf: 626376 bytes, checksum: ebe9c9bb1f5309183c38e38ab50116e9 (MD5) Previous issue date: 2012 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O ácido γ-aminobutírico (GABA) e o glutamato são, respectivamente, os principais neurotransmissores inibitório e excitatório no Sistema Nervoso Central (SNC) e são fundamentais para o processamento visual. Estudos revelam que o glutamato induz liberação de GABA na retina. Trabalhos prévios também apontam que compostos tióis regulam a liberação de GABA, mas ainda não são totalmente esclarecidos os efeitos de tióis (-SH) sobre os níveis endógenos deste neurotransmissor na retina. Neste intermédio, a glutationa (GSH) além de ser o mais importante dos compostos tióis, vem demonstrando exercer um papel neuromodulador na liberação de neurotransmissores. Desta forma, o objetivo deste trabalho foi avaliar um possível efeito modulador de GSH sobre a liberação de GABA mediada por glutamato em retinas de embrião de galinha. Para isso, utilizamos como modelo experimental tecido retiniano íntegro de embrião de galinha, com sete ou oito dias de desenvolvimento. Nos ensaios de liberação de GABA, as retinas foram tratadas com GSH (100 e 500 μM); glutamato (50 e 500 μM) e Butionina Sulfoximina (BSO), inibidor da síntese de glutationa, (50 μM) por 15 minutos, e os níveis de GABA liberado para o meio extracelular foram quantificados por Cromatografia Líquida de Alta Eficácia (CLAE). Para experimentos de liberação de compostos tióis (–SH), as retinas foram incubadas com glutamato (100 μM) com ou sem Na+ por 15 minutos, e os seus níveis extracelulares foram determinados pela reação com DTNB e quantificados por espectrofotometria (412 nm). Os resultados revelam que o glutamato, assim como GSH, liberam GABA. Nossos dados também demonstram que BSO atenua a liberação de GABA promovida por glutamato. Além disso, demonstramos que glutamato induz liberação de compostos tióis independentemente de sódio. Sendo assim, é sabido que glutamato é capaz de liberar GABA e tióis; dentre estes, GSH é o mais abundante e responsável por também liberar GABA. Sabe-se também que uma vez inibida a síntese de GSH por BSO, a liberação de GABA induzida por glutamato é atenuada. Então, se sugere uma possível modulação de GSH na liberação de GABA induzida por glutamato, em retinas íntegras de embrião de galinha. / The γ-aminobutyric acid (GABA) and glutamate are, respectively, major inhibitory and excitatory neurotransmitters in the central nervous system (CNS) and are essential to the visual processing. Studies show that glutamate induces the release of GABA in the retina, but the mechanisms involved in this release are not well elucidated. Previous work also showed that thiols compounds regulate GABA release, but are not well defined the effects of compounds containing sulfhydryl (-SH) on endogenous levels of this neurotransmitter in the retina. In this context, glutathione (GSH) besides being the most important thiols compounds, have demonstrated perform a neuromodulatory role in the release of neurotransmitters. Thus, the objective of this study was to evaluate a possible modulatory effect of GSH on the release of GABA mediated by glutamate in the retina of chick embryo. For this study, we used as experimental model, retinal tissue intact chick embryo, with seven or eight days of development. In tests of release of GABA, the retinas were treated with GSH (100 and 500 μM), glutamate (50 and 500 μM) and Buthionine Sulfoximine (BSO), an inhibitor of glutathione synthesis, (50 μM) per 15 minutes, and GABA levels released into the extracellular medium were quantified by High Performance Liquid Chromatography (HPLC). For release experiments of thiols compounds, the retinas were incubated with glutamate 100 μM (with or without Na +) per 15 minutes, and their extracellular levels were determined by reaction with DTNB and quantified by spectrophotometry (412 nm). The results show that glutamate, as well as GSH, release GABA. Our data also show that BSO attenuates the release of GABA promoted by glutamate. Furthermore, we demonstrate that glutamate induces release of thiol compounds regardless of sodium. Therefore, it is known that glutamate is able to release thiols and GABA, among them, GSH is most abundant and responsible for also release GABA. It is also known that once inhibited GSH synthesis by BSO, the release of GABA induced by glutamate is attenuated. Then, it is suggested a possible modulation of GSH in the release of GABA induced by glutamate in retina intact chicken embryo.
182

Chemogenetic Stimulation of Electrically Coupled Midbrain GABA Neurons in Alcohol Reward and Dependence

Pistorius, Stephanie Suzette 01 May 2017 (has links)
The prevailing view is that enhancement of dopamine (DA) transmission in the mesolimbic system leads to the rewarding properties of alcohol. The mesolimbic DA system, which plays an important role in regulating reward and addiction, consists of DA neurons in the midbrain ventral tegmental area (VTA) that innervate the nucleus accumbens (NAc). It is believed that VTA DA neurons are inhibited by local gamma-aminobutyric acid (GABA) interneurons that express connexin-36 (Cx36) gap junctions (GJs). We have previously demonstrated that blocking Cx36 GJs suppresses electrical coupling between VTA GABA neurons and reduces ethanol intoxication and consumption suggesting that electrical coupling between mature VTA GABA neurons underlies the rewarding properties of ethanol. The aim of this study was to further investigate the role of VTA GABA neurons expressing Cx36 GJs in regulating DA neuron activity and release and mediating ethanol effects on VTA GABA neurons. To this end, we customized a Designer Receptor Exclusively Activated by Designer Drugs (DREADDs) viral vector to target VTA GABA neurons expressing Cx36 GJs in order to chemogenetically modulate their activity. In order to more conclusively demonstrate the role of this sub population of VTA GABA neurons in regulating DA neural activity and release we used electrophysiology to characterize the electrical changes that occur in VTA DA and GABA neurons when Cx36-expressing VTA GABA cells were selectively activated. In addition, we evaluated the effects of activation of VTA GABA neurons on brain stimulation reward and alcohol consumption in ethanol naive and dependent mice. Results indicate that there are two populations of GABA neurons in the VTA, one that is GAD65+/Cx36+ and one that is GAD67+/Cx36-. Activation of Cx36+ VTA GABA neurons by clozapine-n-oxide (CNO) in mice injected with Gq DREADD activated VTA DA neurons and subsequent DA release in the NAc, suggesting that Cx36-containing GABA neurons are inhibiting non-Cx36 GABA neurons to disinhibit DA neurons. In hM3Dq animals, CNO administration provided a rewarding stimulus in the conditioned pace preference paradigm, and reduced consumption in the drink-in-the-dark ethanol consumption paradigm in dependent and naïve mice. A better understanding of the circuitry of the mesolimbic DA system is key to understanding the mechanisms that lead to addiction and may ultimately lead to improved therapies for substance abuse.
183

Chemogenetic Stimulation of Electrically Coupled Midbrain GABA Neurons in Alcohol Reward and Dependence

Pistorius, Stephanie Suzette 01 May 2017 (has links)
The prevailing view is that enhancement of dopamine (DA) transmission in the mesolimbic system leads to the rewarding properties of alcohol. The mesolimbic DA system, which plays an important role in regulating reward and addiction, consists of DA neurons in the midbrain ventral tegmental area (VTA) that innervate the nucleus accumbens (NAc). It is believed that VTA DA neurons are inhibited by local gamma-aminobutyric acid (GABA) interneurons that express connexin-36 (Cx36) gap junctions (GJs). We have previously demonstrated that blocking Cx36 GJs suppresses electrical coupling between VTA GABA neurons and reduces ethanol intoxication and consumption suggesting that electrical coupling between mature VTA GABA neurons underlies the rewarding properties of ethanol. The aim of this study was to further investigate the role of VTA GABA neurons expressing Cx36 GJs in regulating DA neuron activity and release and mediating ethanol effects on VTA GABA neurons. To this end, we customized a Designer Receptor Exclusively Activated by Designer Drugs (DREADDs) viral vector to target VTA GABA neurons expressing Cx36 GJs in order to chemogenetically modulate their activity. In order to more conclusively demonstrate the role of this sub population of VTA GABA neurons in regulating DA neural activity and release we used electrophysiology to characterize the electrical changes that occur in VTA DA and GABA neurons when Cx36-expressing VTA GABA cells were selectively activated. In addition, we evaluated the effects of activation of VTA GABA neurons on brain stimulation reward and alcohol consumption in ethanol naive and dependent mice. Results indicate that there are two populations of GABA neurons in the VTA, one that is GAD65+/Cx36+ and one that is GAD67+/Cx36-. Activation of Cx36+ VTA GABA neurons by clozapine-n-oxide (CNO) in mice injected with Gq DREADD activated VTA DA neurons and subsequent DA release in the NAc, suggesting that Cx36-containing GABA neurons are inhibiting non-Cx36 GABA neurons to disinhibit DA neurons. In hM3Dq animals, CNO administration provided a rewarding stimulus in the conditioned pace preference paradigm, and reduced consumption in the drink-in-the-dark ethanol consumption paradigm in dependent and naïve mice. A better understanding of the circuitry of the mesolimbic DA system is key to understanding the mechanisms that lead to addiction and may ultimately lead to improved therapies for substance abuse.
184

Propofol und Methohexital hemmen die Dünndarmperistaltik : Untersuchungen des Wirkmechanismus am Meerschweinchendünndarm in vitro / Propofol and Methohexital Inhibit Peristalsis in the Guinea-Pig Ileum In Vitro

Berg-Johnson, Wiebke Irlis Maria January 2004 (has links) (PDF)
Propofol und Methohexital hemmen die Dünndarmperistaltik. Untersuchungen des Wirkmechanismus am Meerschweinchendünndarm in vitro Fragestellung: Die Hemmung der Darmmotilität durch Anästhetika und Pharmaka zur Analgosedierung von Patienten in der Intensivmedizin kann Ursache weiterer Komplikationen sein. Diese Arbeit untersucht, ob die Hypnotica Propofol und Methohexital einen Einfluss auf die intestinale Peristaltik haben. Methodik: Dünndarmsegmente des Meerschweinchens wurden in vitro in einer Vorrichtung perfundiert, die propulsive Peristaltik ermöglicht. Durch Registrierung des intraluminalen Drucks kann die Schwelle (peristaltic pressure threshold, PPT), ab der peristaltische Kontraktionen ausgelöst werden, bestimmt werden. Propofol, Methohexital, sowie mögliche Antagonisten, wurden den Dünndarmsegmenten extraserosal zupipettiert und die Änderungen der PPT registriert. Ergebnisse: Propofol und Methohexital beeinflussten die Dünndarmperistaltik auf unterschiedliche Art und Weise. Methohexital führte konzentrationsabhängig zu einem Anstieg der PPT, z.T. bis zur kompletten Hemmung der Peristaltik. Im Gegensatz dazu führte die Gabe von Propofol in keinem Fall zur kompletten Hemmung, es zeigte sich lediglich ein Anstieg der PPT. Die Hemmung durch Methohexital trat nach Naloxon und z.T. nach Bicucullin vermindert auf. Die Hemmung der Peristaltik durch Propofol war zumeist unbeeinflusst durch die verwendeten Antagonisten. Schlussfolgerung: Propofol und Methoxital hemmen konzentrationsabhängig die Dünndarmperistaltik des Meerschweinchens. Der hemmende Effekt von Methohexital scheint durch endogene Einflüsse und durch Bindung an vermittelt GABAA- Rezeptoren vermittelt zu werden. Die vorliegenden Daten weisen darauf hin, dass Hypnotika wie Propofol und Methohexital auch auf die menschliche Peristaltik einen hemmenden Einfluss haben und bei Intensivpatienten einen Ileus induzieren oder verschlimmern können. GABA- Rezeptoren scheinen hierbei eine untergeordnete Rolle zu spielen. / Propofol and Methohexital Inhibit Peristalsis in the Guinea-Pig Ileum In Vitro Introduction: Inhibition of gastrointestinal motility by drugs used for anaesthesia or sedation in critically ill patients in the ICU is a major problem leading to various complications. Thus this work examines whether the hypnotics Propofol and Methohexital exert an inhibitory effect on intestinal peristalsis. Methods: Peristalsis in isolated segments of the guinea-pig small intestine was elicited by distension of the gut wall through a rise of intraluminal pressure and recorded via the intraluminal pressure changes associated with the aborally moving peristaltic contractions. By Propofol, Methohexital and potential antagonists induced change of peristalsis was reflected by an increase/ decrease of the peristaltic pressure threshold (PPT). Results: Propofol and Methohexital impaired the peristalsis of the guinea-pig ileum in vitro in a different manner. Mehohexital concentration-dependently increased PPT, partly the peristaltic reflex was totally abolished. In contrast, propofol never caused complete inhibition of peristalsis. PPT was slightly elevated concentration-dependently with propofol. Inhibition by Methohexital was decreasesed by Naloxon and partly by Bicucullin. Inhibition by Propofol was mostly uninfluenced by the used antagonists. Conclusion: Propofol and Methohexital concentration-dependently impair intestinal peristalsis in the guinea-pig ileum. The inhibitory effect of methohexital seems to be mediated through activation of endogenous opioidergic pathways and through binding to GABAA- receptors. The data suggest that hypnotics such as propofol and methohexital also have an inhibitory effect on intestinal motility in humans and may induce or worsen intestinal atonia in ICU patients. At this GABA- receptors seem to play a tangential role.
185

FG7142 attenuates expression of overexpectation in Pavlovian fear conditioning

Garfield, Joshua Benjamin Bernard, Psychology, Faculty of Science, UNSW January 2008 (has links)
The experiments reported in this thesis studied the mechanisms of expression of overexpectation of conditioned fear, as measured by freezing. In Stage I, rats were conditioned to fear a tone and a flashing light conditioned stimulus (CS) through pairings with a 0.5 mA, 1 s shock. In Stage II, overexpectation was trained by the reinforcement of a compound of these CSs with a shock of the same magnitude. Two compound ?? shock pairings produced an overexpectation effect, as measured by freezing to presentations of the tone alone, while further Stage II training caused over-training of overexpectation. Expression of the overexpectation effect produced by two compound ?? shock pairings could be prevented by pre-test injection of the benzodiazepine partial inverse agonist FG7142. This effect was dose-dependent and not due to state-dependent memory. Control experiments suggested that it was also not due to any general effect of FG7142 on the Pavlovian freezing response. Freezing to a tone that had been conditioned, but not subjected to any decremental training procedures, was unaffected by administration of FG7142 before either the conditioning or test session. FG7142 also did not affect freezing to a tone that had been subjected to an associative blocking procedure. The hypothesis that overexpectation of conditioned fear may be context-dependent was also tested. However, renewal was not observed. Rats that received Stage II training in a context distinct from the Stage I training context showed equivalent expression of overexpectation regardless of whether testing was conducted in the Stage I or Stage II training context. These results are consistent with the hypothesis that overexpectation, like extinction, leads to the imposition of a GABAA receptor-mediated mask on the fear CR. Moreover, they suggest that this masking of fear is the specific consequence of negative predictive error.
186

An attempt to elucidate the role of GABAA receptors in vestibular compensation

Gliddon, C. M., n/a January 2006 (has links)
Loss of sensory input from one vestibular labyrinth by unilateral vestibular deafferentation (UVD) results in a severe ocular motor (i.e., spontaneous nystagmus (SN)) and postural syndrome (i.e., yaw head tilt, (YHT) and roll head tilt (RHT)) which compensates over time in a behavioural recovery process known as vestibular compensation. It is generally accepted that the UVD-induced neuronal imbalance in the resting activity between the two vestibular nuclear complexes (VNCs) generates the ocular motor and postural syndrome and that the restoration of the resting activity in the ipsilateral VNC plays a causal role in the compensation of the static symptoms. γ-Aminobutyric acid (GABA) and the GABAA and GABAB receptors within the VNC are involved in normal vestibulo-ocular and --spinal pathways and it has been suggested that modification of GABAergic inhibition may be a mechanism responsible for the recovery of resting activity in the ipsilateral VNC. Behavioural, western blotting, and immunoassay techniques were used to address the role of the GABAA receptor in the VNC during vestibular compensation. The first study involved the characterization of SN, YHT, and RHT compensation in guinea pigs that had been anaesthetized with isoflurane during the UVD. These animals compensated rapidly (i.e., 30 hrs) and the time to compensate was independent of the duration of the anaesthesia. Using the 30 hrs time frame, the effects of the chronic infusion of the GABAA receptor agonist (muscimol) / antagonist (gabazine) into either the ipsilateral or the contralateral VNC on the compensation of SN, YHT, and RHT, were determined. Infusion of muscimol (250, 500, and 750 ng) into the contralateral VNC and gabazine (31.25, 62.5 and 125 ng) into the ipsilateral VNC significantly affected YHT and RHT (p < 0.05), but not their rate of compensation (p > 0.05). Interestingly, the effects of muscimol and gabazine on YHT and RHT were consistent throughout the first 30 hrs post-UVD. At 30 hrs post-UVD, the pumps were disconnected. In both experimental groups, the value and direction of the YHT and RHT returned to vehicle levels. Infusion of muscimol (62.5, 125, and 250 ng) into the ipsilateral VNC and gabazine (125, 375, and 750 ng) into the contralateral VNC had little effect on YHT and RHT, or their rate of compensation. At 30 hrs post-UVD, the pumps were disconnected. In both experimental groups, the value and direction of the YHT and RHT returned to vehicle levels. These results suggest that the ipsilateral gabazine and contralateral muscimol infusions were modifying the expression of the symptoms without altering the mechanism of compensation. Furthermore, the mechanism responsible for vestibular compensation can cope with the both the GABAA receptor-mediated and the UVD-induced decrease in resting activity. Results from the western blotting study indicated that compensation of SN, YHT, and RHT is not associated with changes in the protein levels of the GABAA receptor α₁, β₂, or γ₂ subunits. Compensation of SN, YHT, and RHT is associated with an elevation in cortisol salivary levels. Overall, the results suggest that the GABAA receptors are involved in the expression of YHT and RHT, but not in the mechanism that is responsible for their compensation.
187

Kan GABA-transporthämmare fungera som läkemedel mot epilepsi?

Mohamed, Diana January 2010 (has links)
<p>Epilepsi är ingen speciell sjukdom utan ett symtom på en hjärnskada eller störd nervcellsfunktion i hjärnan. Epileptiska anfall beror på abnorm urladdning i hjärnans nervceller. Idag lever omkring 60 000 d.v.s. 0,5-1 % av Sveriges befolkning med epilepsi. Risken att drabbas är störst under det första levnadsåret och efter 65-årsålder då risken att drabbas av stroke är som störst. Behandling av epilepsi används i syfte att hindra uppkomst av anfall och göra det möjligt för den drabbade att leva ett relativt normalt liv. Antiepileptika dämpar aktiviteten i hjärnan och reducerar därmed risken för anfall. Under flera år har man försökt utveckla nya antiepileptika mot andra möjliga targets än de som finns idag, bl.a. GABA-transporthämmare. Det enda förekommande läkemedlet med GABA transporthämmande effekt är tiagabin men detta är inte registrerat som läkemedel i Sverige. Syftet med denna studie var att undersöka om GABA-transporthämmare skulle kunna användas som läkemedel mot epilepsi. Metoden som användes var en litteraturstudie där vetenskapliga artiklar hämtades från PubMed, ELIN, Cochrane och Google Scholar. Arbetet baseras på 4 experimentella originalartiklar och en metaanalys. Artiklarna beskriver antiepileptiska effekter och/eller relaterade egenskaper för olika substanser med hämmande effekter på olika GABA- transportörer. Dessa hämmare, ensamma eller i kombination, visades ge kramplösande effekt i olika djurmodeller av epilepsi. Hämmare av olika GABA-transportörer, till exempel tiagabin och EF1502, gav synergistisk effekt, medan hämmare av samma GABA-transportör, till exempel tiagabin och LU-32-176B, resulterade i additiv effekt. Hämning av olika GABA-transportörer i olika celltyper i och runt synapsklyftan verkar därför kunna ge synergistisk effekt. Ingen synergistisk effekt observerades för toxiska effekter. Det finns anledning att tro att ytterligare läkemedel med effekter på GABA-transportörer kan komma att finnas i framtiden för behandling av epilepsi.</p> / <p>Epilepsy is not a specific disease but a symptom of brain injury or impaired nerve cell function in the brain. Epileptic seizures are symptoms of abnormal activity in the brain neurons. Today, about 60 000 i.e. 0.5-1% of the Swedish population live with epilepsy. The risk of being affected is greatest during the first year of life and after the age of 65 years when the risk for stroke is greatest. The treatment of epilepsy is used in order to prevent the onset of seizures and to allow the patient to live a relatively normal life. Anticonvulsants dampen the activity in the brain and thus reduce the risk of seizures.</p><p>During many years, attempts have been made to develop new anticonvulsants against other potential targets than those that exist today, for example GABA-transporter inhibitors. The only presently used medicine with GABA-transporter inhibiting effect is tiagabine, but this is not licensed as a pharmaceutical drug in Sweden.</p><p>The aim of this study was to investigate whether GABA-transport inhibitors could be used as medication for epilepsy. The method that was used was a literature study in which scientific articles were chosen from PubMed, ELIN, Cochrane and Google Scholar. The work is based on 4 original research articles and one meta-analysis. The articles describe antiepileptic effects and/or related properties of various substances with inhibitory actions on different GABA-transporters. These inhibitors, alone or in combination, were shown to have anticonvulsant effects in several different animal models of epilepsy. Inhibitors of different GABA transporters, such as tiagabine and EF1502, resulted in synergistic effects, while inhibitors of the same GABA transporter, such as tiagabine and LU-32-176 B, resulted in additive effects. Inhibition of various GABA transporters in different cell types in and around synapses therefore seems to provide synergistic effects. No synergistic effect was observed for toxic effects. There is reason to believe that additional drugs with effects on GABA transporters may be used in the future for the treatment of epilepsy.</p>
188

Manipulating Embryonic Neural Precursor Cells for Therapeutic Transplantation into a Rat Model of Neuropathic Pain

Furmanski, Orion 18 December 2009 (has links)
Persons with spinal cord injury (SCI) suffer life-long consequences including paralysis, loss of involuntary bodily functions, and chronic pain. A subset of SCI patients develop neuropathic pain (NP), a chronic condition resulting from damage to the spinal cord. Hyperexcitability of spinal cord sensory neurons near damaged tissue is believed to underlie SCI-related NP. Although many therapies have been employed clinically to combat SCI-NP, few give satisfactory long-term relief. Transplantation of cells that release GABA, a molecule that inhibits neuronal activity, is being explored as an alternative to current SCI-NP therapies. My experiments made progress toward preclinical modeling of GABA cell therapy for SCI-NP. First, I sought to determine whether quisqualic acid (QUIS)-induced SCI altered responses to tonic pain stimuli or altered GABAergic neural circuitry in rats. Second, I sought to determine whether a combination of genetic and trophic manipulations could promote a GABAergic phenotype in rat embryonic neural precursor cells (NPCs) in an in vitro culture system. The results revealed that QUIS-SCI rats exhibit unusually prolonged nocifensive responses to hind paw formalin injections. There was no significant difference between QUIS-SCI and sham surgery rats in c-Fos immunolabeling of spinal cord sensory neurons after formalin-induced neuronal activity. However, immunohistochemistry revealed substantial decreases in staining for markers of GABA presynaptic vesicles in injured spinal cord tissue. NPCs were enriched for a neuronal phenotype by combining withdrawal of the growth factor FGF-2 from culture media and overexpression of the transcription factor MASH1 in transfected cells. Although glial marker expression was suppressed in NPCs by these manipulations, expression of neuronal markers none the less declined through time. MASH1-overexpressing NPCs exhibited greater clonal expansion and decreased stress-induced PDI expression after FGF-2 withdrawal as compared to naïve. In light of existing data, these results suggest that the QUIS-SCI model may be useful for testing the efficacy of GABAergic NPC transplantation to reduce neuropathic pain. MASH1 overexpression and FGF-2 withdrawal could serve as a first step toward enriching GABA in NPCs for transplantation. Although the mechanism for MASH1 cytoprotection remains unclear, MASH1 may enhance survival of NPCs grafted into the spinal cord. These experiments contributed to the preclinical basis for application of therapeutic GABAergic stem cell transplantation for NP in human SCI patients.
189

Source, topography and excitatory effects of GABAergic innervation in cockroach salivary glands

Blenau, Wolfgang, Rotte, Cathleen, Witte, Jeannine, Baumann, Otto, Walz, Bernd January 2009 (has links)
Cockroach salivary glands are innervated by dopaminergic and serotonergic neurons. Both transmitters elicit saliva secretion. We studied the distribution pattern of neurons containing gamma-aminobutyric acid ( GABA) and their physiological role. Immunofluorescence revealed a GABA-immunoreactive axon that originates within the subesophageal ganglion at the salivary neuron 2 (SN2) and this extends within the salivary duct nerve towards the salivary gland. GABA-positive fibers form a network on most acinar lobules and a dense plexus in the interior of a minor fraction of acinar lobules. Co-staining with anti-synapsin revealed that some putative GABAergic terminals seem to make pre-synaptic contacts with GABA-negative release sites. Many putative GABAergic release sites are at some distance from other synapses and at distance from the acinar tissue. Intracellular recordings from isolated salivary glands have revealed that GABA does not affect the basolateral membrane potential of the acinar cells directly. When applied during salivary duct nerve stimulation, GABA enhances the electrical response of the acinar cells and increases the rates of fluid and protein secretion. The effect on electrical cell responses is mimicked by the GABA(B) receptor agonists baclofen and SKF97541, and blocked by the GABAB receptor antagonists CGP52432 and CGP54626. These findings indicate that GABA has a modulatory role in the control of salivation, acting presynaptically on serotonergic and/or dopaminergic neurotransmission.
190

Molecular characterization of the binding site of nematode GABA-A receptors

Accardi, Michael 01 August 2010 (has links)
Haemonchus contortus is a parasitic nematode that is controlled in large part by nematocidal drugs that target receptors of the parasitic nervous system. Hco-UNC-49 is a nematode GABA receptor that has a relatively low overall sequence homology to mammalian GABA receptors but is very similar to the UNC-49 receptor found in the free living nematode Caenorhabditis elegans. However, the nematode receptors do exhibit different sensitivities to GABA which may be linked to differences in the putative GABA binding domains. Mutational analysis conducted in this study identified at least one amino acid, positioned near the GABA binding domain, which may partially account for differences in nematode GABA sensitivity. In addition, positions reported to be crucial for GABA sensitivity in mammalian receptors also affect GABA sensitivity in Hco- UNC-49 suggesting that the GABA binding domains of the mammalian and nematode GABA receptors share some pharmacological similarities. However, there were some differences observed. For example, in mammalian GABAA receptors amino acids from both  and  subunits appear to be important for GABA sensitivity. For residues examined in this study, only those on the UNC-49B subunit, and not UNC-49C, appear important for GABA sensitivity. / UOIT

Page generated in 0.047 seconds