Spelling suggestions: "subject:"anergic"" "subject:"crfergic""
21 |
Functional Analysis of the Cis-Regulatory Elements I56i, I56ii and I12b that Control Dlx Gene Expression in the Developing Forebrain of Mouse and ZebrafishYu, Man 22 August 2011 (has links)
The vertebrate Dlx gene family consists of multiple convergently transcribed bigene clusters and encodes a group of homeodomain-containing transcription factors crucial for the development of forebrain, branchial arches, sensory organs and limbs. At least four cis-regulatory elements (CREs) are responsible for Dlx expression in the forebrain: URE2 and I12b in the Dlx1/Dlx2 (zebrafish dlx1a/dlx2a) locus, and, I56i and I56ii in the Dlx5/Dlx6 (zebrafish dlx5a/dlx6a) locus. Here, we first show that unlike the other three enhancers, mouse I56ii CRE targets a group of GABAergic projection neurons expressing striatal markers Meis2 and Islet1. Meis2 and Islet1 proteins can activate reporter gene transcription via the I56ii CRE, suggesting that they may be potential upstream regulators of Dlx genes in vivo. To determine whether there exists a dlx-mediated regulatory pathway during zebrafish GABAergic neuron formation, we establish two independent lines of transgenic fish in which the GFP reporter gene is controlled by a 1.4kb dlx5a/dlx6a intergenic sequence (encompassing zebrafish I56i and I56ii) and a 1.1kb fragment containing only I56i CRE, respectively. Our observations reveal that dlx5a/dlx6a regulatory elements exhibit a fairly specific activity in the zebrafish forebrain and may be essential for GABAergic neuron generation, while I56i and I56ii are likely to play distinct roles in modulating this process in different subpopulations of cells. Disruption of dlx1a/dlx2a or dlx5a/dlx6a function leads to a marked decrease of enhancer activity in the diencephalon and midbrain as well as a comparatively lesser extent of reduction in the telencephalon. In order to define the specific contribution of various individual CREs to overall Dlx regulation, we also generate a mutant mouse model in which I12b CRE is selectively deleted. Despite that mice homozygous for I12b loss develop normally and harbor no overt morphological defects in the forebrain, targeted deletion of this enhancer results in a significant reduction of Dlx1/Dlx2 transcript levels and seemingly perturbs cell proliferation in the subpallial telencephalon, particularly in the ventricular and subventricular zones of ganglionic eminences. Taken together, these data illustrate a complex and dynamic Dlx regulation in the early developing forebrain through the implications of multiple Dlx CREs with overlapping and diverse functions.
|
22 |
Recurrent inhibitory network among cholinergic inerneurons of the striatumSullivan, Matthew Alexander 08 November 2012 (has links)
The striatum is the initial input nuclei of the basal ganglia, and it serves as an integral processing center for action selection and sensorimotor learning. Glutamatergic projections from the cortex and thalamus converge with dense dopaminergic axons from the midbrain to provide the primary inputs to the striatum. Striatal output is then relayed to downstream basal ganglia nuclei by GABAergic medium – sized spiny neurons, which comprise at least 95% of the population of neurons in the striatum. The remaining population of local circuit neurons is dedicated to regulating the activity of spiny projection neurons, and although spiny neurons form a weak lateral inhibitory network among themselves via local axon collaterals, feedforward modulation exerts more powerful control over spiny neuron excitability. Of the striatal interneurons, only one class is not GABAergic. These neurons are cholinergic and correspond to the tonically active neurons (TANs) recorded in vivo, which respond to specific environmental stimuli with a transient depression, or pause, of tonic firing. Striatal cholinergic interneurons account for less than 2 % of the striatal neuronal population, yet their axons form an extensive and complex network that permeates the entire striatum and significantly shapes striatal output by acting at numerous targets via varied receptor types. Indeed, the persistent level of ambient striatal acetylcholine as well as changes to that basal acetylcholine level underlie the major mechanisms of cholinergic signaling in the striatum, however regulation of this system by the local striatal microcircuitry is not well understood. This dissertation finds that activation of intrastriatal cholinergic fibers elicits polysynaptic GABAA inhibitory postsynaptic currents (IPSCs) in cholinergic interneurons recorded in brain slices. Excitation of striatal GABAergic neurons via nicotinic acetylcholine receptors (nAChRs) mediates this polysynaptic inhibition in a manner independent of dopamine. Moreover, activation of a single cholinergic interneuron is capable of eliciting polysynaptic GABAA IPSCs onto itself and nearby cholinergic interneurons. These findings provide an important insight into the striatal microcircuitry controlling cholinergic neuron excitability. / text
|
23 |
Schichtenspezifische Charakterisierung der VIPcre/tdTomato-Mauslinie mittels neurochemischer Marker / Layer-specific characterization of the VIPcre/tdTomato mouse with neurochemical markersScheuer, Bianca 17 August 2015 (has links)
Die Neurone des Neokortex lassen sich in exzitatorische und inhibitorische Neurone unterteilen. Bei den inhibitorischen Neuronen, die 20-30% der Neurone ausmachen, handelt es sich um GABA freisetzende Interneurone, die anhand ihrer morphologischen, elektrophysiologischen und molekularen Merkmale voneinander unterschieden werden können. Man unterscheidet drei große Gruppen von GABAergen Interneuronen, die Parvalbumin (PV)-exprimierenden, die Somatostatin (SOM)-exprimierenden und die ionotropen Serotonin-Rezeptor 5HT3a-exprimierenden Interneurone. Die 5HT3a-Rezeptor-exprimierenden Interneurone stellen eine sehr heterogene Gruppe dar und bestehen zu 40% aus vasoaktives intestinales Polypeptid (VIP)-exprimierenden Interneuronen.
Für die vorliegende Studie wurde die transgene VIPcre/tdTomato-Maus verwendet, die mit Hilfe der Cre/loxP-Technik generiert wurde. In dieser Maus sollten VIP-exprimierende Zellen mit dem fluoreszenten tdTomato-Protein markiert sein.
Ziel der vorliegenden Arbeit war es, die VIP-exprimierenden Neurone im somatosensorischen Kortex (Barrel-Kortex) mittels Immunhistochemie und Fluoreszenz-in-situ-Hybridisierung neurochemisch zu charakterisieren. Dafür wurden die Proteine vasoaktives intestinales Polypeptid, Somatostatin, Parvalbumin, Glutamatdecarboxylase (GAD 67) und der vesikuläre Glutamattransporter 1 (VGLUT1) als zu identifizierende molekulare Bestandteile genutzt. Ferner konnten Aussagen über die Zelldichte und Zellverteilung von VIP/tdTomato-positiven Zellen in den Schichten I-VI des Barrel-Kortex getroffen werden, um eine schichtenspezifische Charakterisierung der VIPcre/tdTomato-Maus durchzuführen. Außerdem wurde nach möglichen Kolokalisationen zwischen VIP und SOM und VIP und PV gesucht. Durch den Einsatz der Sonden Gad1 und Vglut1 konnten Rückschlüsse auf die exzitatorischen bzw. inhibitorischen Eigenschaften von VIP-exprimierenden Interneuronen gezogen werden.
Durch den Einsatz zweier verschiedener VIP-Antikörper und einer Vip-Sonde konnte nachgewiesen werden, dass es sich bei den tdTomato-fluoreszenten Zellen tatsächlich um VIP-exprimierende Interneurone handelt. Zwischen den VIP/tdTomato-positiven Zellen und dem PV-Antikörper bzw. der Pvalb-Sonde wurde niemals eine Kolokalisation nachgewiesen. Für den SOM-Antikörper bzw. die Sst-Sonde konnte nur eine ganz geringe Anzahl an Kolokalisationen mit den VIP/tdTomato-Zellen gezeigt werden. Dadurch bestätigt sich, dass es sich bei der VIPcre/tdTomato-Maus um ein verlässliches Mausmodell zur Untersuchung von VIP-exprimierenden Interneuronen handelt. Die Vglut1-Sonde hatte niemals eine VIP/tdTomato-Zelle markiert, wodurch sich exzitatorische Eigenschaften der VIP-Zellen nicht nachweisen ließen.
Hingegen markierte die Gad1-Sonde den Großteil aller VIP/tdTomato-Zellen, wodurch sich bestätigen lässt, dass es sich bei den VIP-exprimierenden Interneuronen um inhibitorische GABAerge Interneurone handelt.
Die größte Population an GABAergen Interneuronen in der VIPcre/tdTomato-Maus stellen die PV-exprimierenden Interneurone dar. In den Schichten IV und Vb wurden die meisten PV-positiven Zellen nachgewiesen. Die SOM-exprimierenden Interneurone stellen die zweitgrößte Zellpopulation dar. Die meisten SOM-positiven Zellen befinden sich in den neokortikalen Schichten Vb und VI. Bei den VIP-exprimierenden Interneuronen konnte die größte Anzahl an Zellen in Schicht II/III gefunden werden.
|
24 |
Functional Analysis of the Cis-Regulatory Elements I56i, I56ii and I12b that Control Dlx Gene Expression in the Developing Forebrain of Mouse and ZebrafishYu, Man 22 August 2011 (has links)
The vertebrate Dlx gene family consists of multiple convergently transcribed bigene clusters and encodes a group of homeodomain-containing transcription factors crucial for the development of forebrain, branchial arches, sensory organs and limbs. At least four cis-regulatory elements (CREs) are responsible for Dlx expression in the forebrain: URE2 and I12b in the Dlx1/Dlx2 (zebrafish dlx1a/dlx2a) locus, and, I56i and I56ii in the Dlx5/Dlx6 (zebrafish dlx5a/dlx6a) locus. Here, we first show that unlike the other three enhancers, mouse I56ii CRE targets a group of GABAergic projection neurons expressing striatal markers Meis2 and Islet1. Meis2 and Islet1 proteins can activate reporter gene transcription via the I56ii CRE, suggesting that they may be potential upstream regulators of Dlx genes in vivo. To determine whether there exists a dlx-mediated regulatory pathway during zebrafish GABAergic neuron formation, we establish two independent lines of transgenic fish in which the GFP reporter gene is controlled by a 1.4kb dlx5a/dlx6a intergenic sequence (encompassing zebrafish I56i and I56ii) and a 1.1kb fragment containing only I56i CRE, respectively. Our observations reveal that dlx5a/dlx6a regulatory elements exhibit a fairly specific activity in the zebrafish forebrain and may be essential for GABAergic neuron generation, while I56i and I56ii are likely to play distinct roles in modulating this process in different subpopulations of cells. Disruption of dlx1a/dlx2a or dlx5a/dlx6a function leads to a marked decrease of enhancer activity in the diencephalon and midbrain as well as a comparatively lesser extent of reduction in the telencephalon. In order to define the specific contribution of various individual CREs to overall Dlx regulation, we also generate a mutant mouse model in which I12b CRE is selectively deleted. Despite that mice homozygous for I12b loss develop normally and harbor no overt morphological defects in the forebrain, targeted deletion of this enhancer results in a significant reduction of Dlx1/Dlx2 transcript levels and seemingly perturbs cell proliferation in the subpallial telencephalon, particularly in the ventricular and subventricular zones of ganglionic eminences. Taken together, these data illustrate a complex and dynamic Dlx regulation in the early developing forebrain through the implications of multiple Dlx CREs with overlapping and diverse functions.
|
25 |
Early Developmental Alterations in GABAergic Protein Expression in Fragile X Knockout MiceAdusei, Daniel C. 14 December 2010 (has links)
The purpose of this study was to examine the expression of GABAergic proteins in Fmr1 knockout mice during brain maturation and to assess behavioural changes potentially linked to perturbations in the GABAergic system. Quantitative western blotting of the forebrain revealed that compared to wild-type mice, the GABAA receptor α1, β2, and δ subunits, and the GABA catabolic enzymes GABA transaminase and SSADH were down-regulated during postnatal development, while GAD65 was up-regulated in the adult knockout mouse forebrain. In tests of locomotor activity, the suppressive effect on motor activity of the GABAA β2/3 subunit-selective drug loreclezole was impaired in the mutant mice. In addition, sleep time induced by the GABAA β2/3-selective anaesthetic drug etomidate was decreased in the knockout mice. Our results indicate that disruptions in the GABAergic system in the developing brain may result in behavioural consequences in adults with fragile X syndrome.
|
26 |
Early Developmental Alterations in GABAergic Protein Expression in Fragile X Knockout MiceAdusei, Daniel C. 14 December 2010 (has links)
The purpose of this study was to examine the expression of GABAergic proteins in Fmr1 knockout mice during brain maturation and to assess behavioural changes potentially linked to perturbations in the GABAergic system. Quantitative western blotting of the forebrain revealed that compared to wild-type mice, the GABAA receptor α1, β2, and δ subunits, and the GABA catabolic enzymes GABA transaminase and SSADH were down-regulated during postnatal development, while GAD65 was up-regulated in the adult knockout mouse forebrain. In tests of locomotor activity, the suppressive effect on motor activity of the GABAA β2/3 subunit-selective drug loreclezole was impaired in the mutant mice. In addition, sleep time induced by the GABAA β2/3-selective anaesthetic drug etomidate was decreased in the knockout mice. Our results indicate that disruptions in the GABAergic system in the developing brain may result in behavioural consequences in adults with fragile X syndrome.
|
27 |
Mise en place des interneurones GABAergiques de la couche moléculaire du cervelet au cours du développement / Development of the molecular layer GABAergic interneuron circuitry in the cerebellumCadilhac, Christelle 20 November 2015 (has links)
La mise en place des circuits neuronaux fonctionnels se construit autour d'une grande diversité cellulaire et nécessite l'accomplissement d'une série d'évènements complexes incluant la prolifération, la migration, la différenciation, le guidage axonal, la reconnaissance cellulaire et la synaptogenèse des progéniteurs neuronaux. Dans le cervelet, les interneurones GABAergiques de la couche moléculaire (IGCM) s‘intègrent au cours des deux premières semaines post-natales et se différencient en deux sous-types cellulaires, les cellules en panier (CP) qui innervent le segment initial de la cellule de Purkinje, cellule principale du cervelet, et les cellules étoilées qui innervent l'arbre dendritique de la cellule Purkinje. Bien que ces deux types cellulaires possèdent des morphologies distinctes et innervent des sous-domaines cellulaires spécifiques, aucun marqueur moléculaire ne permet de les discriminer. Depuis près d'un siècle, la controverse existe concernant leur identité et deux théories s'affrontent. La première suggère que ces deux cellules sont des variantes issues d'un même progéniteur et que les différences morphologiques sont dues à un changement progressif de l'environnement cellulaire alors qu'une autre hypothèse suggère que ces deux cellules proviennent de progéniteurs neuronaux différents. Au cours de ma thèse j'ai étudié l'intégration des IGCM au sein de la couche moléculaire (CM) en caractérisant deux étapes clés de la formation des circuits GABAergiques, la migration et l'innervation de leur cible. En utilisant une combinaison de techniques telles que la microscopie bi-photonique et les greffes in vivo de progéniteurs neuronaux, j'ai mis en évidence que durant la première semaine post-natale, les IGCM quittent leur lieu de naissance pour rejoindre la CM en réalisant une seule étape de migration radiale. De manière intéressante certains IGCM accomplissent une étape de migration supplémentaire inédite tangentiellement à la surface piale pendant la deuxième semaine post-natale. Cette nouvelle phase de migration tangentielle des IGCM se déroule au sein de la couche granulaire externe où résident les cellules granulaires pré-migratoires dont les fibres qui expriment TAG-1 jouent un rôle essentiel en tant que support physique et participent à l'établissement des IGCM en mode “inside-out”. De plus, nos résultats suggèrent que seule une sous-population de type cellule étoilée effectuerait cette étape supplémentaire, montrant ainsi une première divergence dans le processus de maturation des IGCM. Par la suite, je me suis intéressée à l'innervation des cellules de Purkinje par les CP nouvellement différenciées. En utilisant des techniques d'immuno-histochimie, j'ai tout d'abord montré que la Neuropiline-1 (NRP1), un des récepteurs de la Sémaphorine-3A, était exprimé au niveau des terminaisons axonales des CP. Enfin, grâce à l'analyse d'un mutant conditionnel pour NRP1, j'ai pu mettre en évidence qu'en plus de son rôle crucial dans le guidage axonal des CP, NRP1 est également impliquée dans l'innervation spécifique du segment initial axonal des cellules de Purkinje en interagissant avec une molécule d'adhésion cellulaire de la famille L1CAM, la Neurofascine. Ces résultats démontrent pour la première fois un rôle de NRP1 dans la transition entre l'étape de guidage avec celle de la reconnaissance cellulaire par les CP. En conclusion, nos résultats suggèrent fortement que les deux sous-types d'IGMC possèdent un programme génétique spécifique leur permettant de s'intégrer de manière unique au sein de la CM. / The establishment of functional neural circuits is built around a large cell diversity and requires the completion of a series of complexe events including proliferation, migration, differentiation, axon guidance, cell recognition and synaptogenesis of neural precursors. In the cerebellum, molecular layer GABAergic interneurons (MLGI) reach their final location during the first two post-natal weeks and differentiate into two cellular subtypes, the basket cells (BC) that innervate the Purkinje cell initial segment and the stellate cells that innervate the dendritic tree of the Purkinje cell, the principal cell of cerebellar cortex. Although these two cell types have distinct morphologies and innervate specific subcellular domains, no molecular marker allows to discriminate between them. For nearly a century, controversy exists concerning their identity and two theories exist. The first one suggests that these two cell types are variants derived from a single progenitor and that morphological divergence is due to a gradual change in the cellular environment while the other hypothesis suggests that these two cell types come from different progenitors. During my thesis, I studied the integration of the MLGI in the molecular layer (ML) characterizing two key steps in the formation of GABAergic circuits, migration and innervation of their target. Using a combination of techniques such as two-photon microscopy and in vivo transplantation of neural progenitors, I highlighted that during the first post-natal week, MLGI leave their birthplace to join the ML by performing a single radial migration step. Interestingly, some MLGI perform an unexpected additional migration step tangentially to the pial surface during the second post-natal week. This new phase of MLGI tangential migration takes place in the external granule cell layer where resident pre-migratory granule cells whose fibers expressing TAG-1 play an essential role as physical support and participate in the establishment of MLGI « inside-out » mode. In addition, our results suggest that only a stellate-like subpopulation would perform this extra step, bringing the first indication of an early divergence during MLGI maturation process. Then, I was interested in the innervation of Purkinje cells by newly differentiated BC. Using immunohistochemistry experiments, I first showed that Neuropilin-1 (NRP1), a Semaphorin-3A receptor, was expressed in the BC axon terminals. Finally, through the analysis of a NRP1 conditional mutant, I brought out that, in addition to its critical implication in axon guidance, NRP1 is also involved in the specific innervation of the Purkinje cell axon initial segment by interacting with a cell adhesion molecule belonging to the L1 family, Neurofascin. These results demonstrate for the first time a role of NRP1 in the transition between the guidance and the cell recognition steps by BC. In conclusion, our results strongly support that the two MLGI subtypes have a specific genetic program allowing them to integrate within the ML in a unique manner.
|
28 |
Régulation rapide du co-transporteur neuronal K/Cl KCC2 par l'inhibition et l'excitation dans les neurones matures. / Rapid regulation of the neuronal K/Cl co-transporter KCC2 by excitation and inhibition in mature neurons.Heubl, Martin 12 February 2016 (has links)
La polarité et l'efficacité de la transmission GABAergique dépendent de la concentration intra-neuronale en chlore. Dans les neurones matures, le co-transporteur K+/Cl- KCC2 maintient la concentration intracellulaire en chlore à un niveau bas, permettant ainsi une réponse inhibitrice du GABA. En plus de son rôle dans la transmission GABAergique, KCC2 régule aussi l'efficacité de la transmission glutamatergique en contrôlant la spinogenèse, l'exocytose et la dynamique membranaire des récepteurs AMPA. Du fait de son importance aux synapses excitatrices et inhibitrices, il est crucial de comprendre les mécanismes qui régulent l'expression membranaire et la fonction de KCC2. La régulation de KCC2 par l'activité glutamatergique excitatrice ayant été bien caractérisée, il reste à déterminer si l'expression et la fonction de KCC2 sont régulées par l'activité inhibitrice GABAergique. Pendant ma thèse, j'ai montré que KCC2 est en effet directement régulé par la transmission GABAergique. J'ai trouvé que l'activation aigue des RGABAA confine KCC2 dans la membrane alors que le blocage des RGABAA augmente la dynamique membranaire et l'internalisation du transporteur. Les mécanismes moléculaires impliquent le chlore comme messager secondaire, la kinase WNK1 et la phosphorylation de KCC2 sur des résidus thréonines clés. J'ai ensuite pu montrer que cette régulation à un impact aux synapses inhibitrice et excitatrice. Mon travail propose un mécanisme nouveau de la régulation de l'homéostasie du chlore par l'inhibition GABAergique. Ainsi les neurones peuvent compenser une augmentation ou une diminution en chlore neuronale par une adaptation rapide de KCC2 à la surface cellulaire. / The polarity and efficacy of GABAergic neurotransmission depends on the intraneuronal chloride concentration. In mature neurons chloride extrusion by the K+/Cl- co-transporter KCC2 permits an inhibitory influx upon activation of GABAA receptors. In addition to its role in GABAergic transmission, KCC2 regulates also glutamatergic transmission in an ion-independent manner by controlling spinogenesis and AMPAR exocytosis and membrane diffusion in dendritic spines. Knowing its pivotal role at central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. While regulation of KCC2 by neuronal excitation is well documented, it is still unknown whether neuronal inhibition itself can regulate the transporter’s membrane expression and/or activity. During my PhD I was able to demonstrate a direct regulation of KCC2 membrane diffusion and stability by GABAA receptor-mediated inhibition and I characterized the underlying signaling cascade. I found that activation of GABAAR decreased KCC2 lateral diffusion while GABAAR blockade led to increased membrane dynamics and internalization of the transporter. I could show that KCC2 regulation by neuronal inhibition requires chloride as second intracellular messenger and chloride-sensing WNK1 kinase that directly phosphorylate KCC2 on key Threonine residues. This regulation has a functional impact at both excitatory and inhibitory synapses. My work reports a novel and rapid mechanism of control of chloride homeostasis by GABAA receptor-mediated inhibition that allows maintaining the polarity and activity of GABAA receptors constant.
|
29 |
Functional Analysis of the Cis-Regulatory Elements I56i, I56ii and I12b that Control Dlx Gene Expression in the Developing Forebrain of Mouse and ZebrafishYu, Man January 2011 (has links)
The vertebrate Dlx gene family consists of multiple convergently transcribed bigene clusters and encodes a group of homeodomain-containing transcription factors crucial for the development of forebrain, branchial arches, sensory organs and limbs. At least four cis-regulatory elements (CREs) are responsible for Dlx expression in the forebrain: URE2 and I12b in the Dlx1/Dlx2 (zebrafish dlx1a/dlx2a) locus, and, I56i and I56ii in the Dlx5/Dlx6 (zebrafish dlx5a/dlx6a) locus. Here, we first show that unlike the other three enhancers, mouse I56ii CRE targets a group of GABAergic projection neurons expressing striatal markers Meis2 and Islet1. Meis2 and Islet1 proteins can activate reporter gene transcription via the I56ii CRE, suggesting that they may be potential upstream regulators of Dlx genes in vivo. To determine whether there exists a dlx-mediated regulatory pathway during zebrafish GABAergic neuron formation, we establish two independent lines of transgenic fish in which the GFP reporter gene is controlled by a 1.4kb dlx5a/dlx6a intergenic sequence (encompassing zebrafish I56i and I56ii) and a 1.1kb fragment containing only I56i CRE, respectively. Our observations reveal that dlx5a/dlx6a regulatory elements exhibit a fairly specific activity in the zebrafish forebrain and may be essential for GABAergic neuron generation, while I56i and I56ii are likely to play distinct roles in modulating this process in different subpopulations of cells. Disruption of dlx1a/dlx2a or dlx5a/dlx6a function leads to a marked decrease of enhancer activity in the diencephalon and midbrain as well as a comparatively lesser extent of reduction in the telencephalon. In order to define the specific contribution of various individual CREs to overall Dlx regulation, we also generate a mutant mouse model in which I12b CRE is selectively deleted. Despite that mice homozygous for I12b loss develop normally and harbor no overt morphological defects in the forebrain, targeted deletion of this enhancer results in a significant reduction of Dlx1/Dlx2 transcript levels and seemingly perturbs cell proliferation in the subpallial telencephalon, particularly in the ventricular and subventricular zones of ganglionic eminences. Taken together, these data illustrate a complex and dynamic Dlx regulation in the early developing forebrain through the implications of multiple Dlx CREs with overlapping and diverse functions.
|
30 |
A Novel Function of Giant Ankyrin-G in Promoting the Formation of Somatodendritic GABAA Receptor SynaptogenesisTseng, Wei Chou January 2014 (has links)
<p>The formation and retention of distinct membrane domains in the fluidic membrane bilayer is the key process in establishing spatial organization for mediating physiological functions in metazoans. The spectrin-ankyrin network organizes diverse membrane domains including T-tubule and intercalated disc of cardiomyocytes, basolateral membrane of epithelial cells, costameres of striatal muscle, and axon initial segments and nodes of Ranvier in nervous system. This thesis identifies a novel function of 480 kDa ankyrin-G, an alternatively spliced isoform of the ankyrin family, in promoting somatodendritic GABAA receptor synaptogenesis both in vitro and in vivo. In the nervous system, an insertion of a neuronal specific exon (exon 37) occurs in ankyrin-G polypeptide which results in a 480 kDa isoform. 480 kDa ankyrin-G (giant ankyrin-G) has been shown to coordinate formation and maintenance of the axon initial segment (AIS) and nodes of Ranvier. This thesis research began with the discovery that giant ankyrin-G, previously thought to be confined to the axon initial segment, forms developmentally-regulated and cell-type specific somatodendritic "outposts" on the plasma membrane of pyramidal neurons. This somatodendritic 480 kDa ankyrin-G outpost forms micron-scale membrane domains where it associates with canonical AIS binding partners including voltage-gated sodium channel and neurofascin. This thesis further discovered that the giant insert of 480 kDa ankyrin-G interacts with GABARAP, a GABAA receptor-associated protein. Both the interaction with GABARAP and the membrane association through palmitoylation of giant ankyrin-G are required for the formation of somatodendritic GABAergic synapses. This work further found that ankyrin-G associates with extrasynaptic GABAA receptors and stabilizes receptors on the extrasynaptic membrane through opposing endocytosis. This story demonstrates for the first time the existence of giant ankyrin-G somatodendritic outpost as well as its function in directing the formation of GABAergic synapses that provides a rationale for studies linking ankyrin-G genetic variation with psychiatric disease and neurodevelopmental disorders.</p><p>Additional work presented in the Appendix characterized novel ankyrin-G full length transcripts in the heart and kidney with unique domain compositions though alternative splicing. The preliminary work further identified biochemical properties and potential role of an insert C in the C-terminus of ankyrin-G in mediating cytokinesis and cellular migration in mouse fibroblasts. Together, this thesis work expands the knowledge of giant ankyrin-G functions in the nervous system and offers insights into the diversified roles of distinct ankyrin-G peptides acquired from alternative splicing in organizing specific membrane domains and interacting with defined intracellular pathways in different tissues.</p> / Dissertation
|
Page generated in 0.0518 seconds