• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mise en place des interneurones GABAergiques de la couche moléculaire du cervelet au cours du développement / Development of the molecular layer GABAergic interneuron circuitry in the cerebellum

Cadilhac, Christelle 20 November 2015 (has links)
La mise en place des circuits neuronaux fonctionnels se construit autour d'une grande diversité cellulaire et nécessite l'accomplissement d'une série d'évènements complexes incluant la prolifération, la migration, la différenciation, le guidage axonal, la reconnaissance cellulaire et la synaptogenèse des progéniteurs neuronaux. Dans le cervelet, les interneurones GABAergiques de la couche moléculaire (IGCM) s‘intègrent au cours des deux premières semaines post-natales et se différencient en deux sous-types cellulaires, les cellules en panier (CP) qui innervent le segment initial de la cellule de Purkinje, cellule principale du cervelet, et les cellules étoilées qui innervent l'arbre dendritique de la cellule Purkinje. Bien que ces deux types cellulaires possèdent des morphologies distinctes et innervent des sous-domaines cellulaires spécifiques, aucun marqueur moléculaire ne permet de les discriminer. Depuis près d'un siècle, la controverse existe concernant leur identité et deux théories s'affrontent. La première suggère que ces deux cellules sont des variantes issues d'un même progéniteur et que les différences morphologiques sont dues à un changement progressif de l'environnement cellulaire alors qu'une autre hypothèse suggère que ces deux cellules proviennent de progéniteurs neuronaux différents. Au cours de ma thèse j'ai étudié l'intégration des IGCM au sein de la couche moléculaire (CM) en caractérisant deux étapes clés de la formation des circuits GABAergiques, la migration et l'innervation de leur cible. En utilisant une combinaison de techniques telles que la microscopie bi-photonique et les greffes in vivo de progéniteurs neuronaux, j'ai mis en évidence que durant la première semaine post-natale, les IGCM quittent leur lieu de naissance pour rejoindre la CM en réalisant une seule étape de migration radiale. De manière intéressante certains IGCM accomplissent une étape de migration supplémentaire inédite tangentiellement à la surface piale pendant la deuxième semaine post-natale. Cette nouvelle phase de migration tangentielle des IGCM se déroule au sein de la couche granulaire externe où résident les cellules granulaires pré-migratoires dont les fibres qui expriment TAG-1 jouent un rôle essentiel en tant que support physique et participent à l'établissement des IGCM en mode “inside-out”. De plus, nos résultats suggèrent que seule une sous-population de type cellule étoilée effectuerait cette étape supplémentaire, montrant ainsi une première divergence dans le processus de maturation des IGCM. Par la suite, je me suis intéressée à l'innervation des cellules de Purkinje par les CP nouvellement différenciées. En utilisant des techniques d'immuno-histochimie, j'ai tout d'abord montré que la Neuropiline-1 (NRP1), un des récepteurs de la Sémaphorine-3A, était exprimé au niveau des terminaisons axonales des CP. Enfin, grâce à l'analyse d'un mutant conditionnel pour NRP1, j'ai pu mettre en évidence qu'en plus de son rôle crucial dans le guidage axonal des CP, NRP1 est également impliquée dans l'innervation spécifique du segment initial axonal des cellules de Purkinje en interagissant avec une molécule d'adhésion cellulaire de la famille L1CAM, la Neurofascine. Ces résultats démontrent pour la première fois un rôle de NRP1 dans la transition entre l'étape de guidage avec celle de la reconnaissance cellulaire par les CP. En conclusion, nos résultats suggèrent fortement que les deux sous-types d'IGMC possèdent un programme génétique spécifique leur permettant de s'intégrer de manière unique au sein de la CM. / The establishment of functional neural circuits is built around a large cell diversity and requires the completion of a series of complexe events including proliferation, migration, differentiation, axon guidance, cell recognition and synaptogenesis of neural precursors. In the cerebellum, molecular layer GABAergic interneurons (MLGI) reach their final location during the first two post-natal weeks and differentiate into two cellular subtypes, the basket cells (BC) that innervate the Purkinje cell initial segment and the stellate cells that innervate the dendritic tree of the Purkinje cell, the principal cell of cerebellar cortex. Although these two cell types have distinct morphologies and innervate specific subcellular domains, no molecular marker allows to discriminate between them. For nearly a century, controversy exists concerning their identity and two theories exist. The first one suggests that these two cell types are variants derived from a single progenitor and that morphological divergence is due to a gradual change in the cellular environment while the other hypothesis suggests that these two cell types come from different progenitors. During my thesis, I studied the integration of the MLGI in the molecular layer (ML) characterizing two key steps in the formation of GABAergic circuits, migration and innervation of their target. Using a combination of techniques such as two-photon microscopy and in vivo transplantation of neural progenitors, I highlighted that during the first post-natal week, MLGI leave their birthplace to join the ML by performing a single radial migration step. Interestingly, some MLGI perform an unexpected additional migration step tangentially to the pial surface during the second post-natal week. This new phase of MLGI tangential migration takes place in the external granule cell layer where resident pre-migratory granule cells whose fibers expressing TAG-1 play an essential role as physical support and participate in the establishment of MLGI « inside-out » mode. In addition, our results suggest that only a stellate-like subpopulation would perform this extra step, bringing the first indication of an early divergence during MLGI maturation process. Then, I was interested in the innervation of Purkinje cells by newly differentiated BC. Using immunohistochemistry experiments, I first showed that Neuropilin-1 (NRP1), a Semaphorin-3A receptor, was expressed in the BC axon terminals. Finally, through the analysis of a NRP1 conditional mutant, I brought out that, in addition to its critical implication in axon guidance, NRP1 is also involved in the specific innervation of the Purkinje cell axon initial segment by interacting with a cell adhesion molecule belonging to the L1 family, Neurofascin. These results demonstrate for the first time a role of NRP1 in the transition between the guidance and the cell recognition steps by BC. In conclusion, our results strongly support that the two MLGI subtypes have a specific genetic program allowing them to integrate within the ML in a unique manner.
2

Récepteur présynaptique métabotropique du Glutamate de type 4 (mGluR4) : fonctions synaptiques et mécanismes d’action dans le cervelet / Presynaptic Metabotropic Glutamate Receptors type 4 (mGluR4) : Synaptic Functions and Mechanisms of Action in the Cerebellar Cortex

Bessiron, Thomas 28 January 2014 (has links)
Les récepteurs métabotropiques au glutamate (mGluRs) jouent un rôle important dans la régulation de la neurotransmission excitatrice. Les mGluRs du groupe III (mGluR4, 7 et 8), sont connus pour agir en tant qu’autorécepteurs, diminuant la libération vésiculaire de glutamate. Ces récepteurs couplés aux protéines G ont une vaste distribution cérébrale, et sont ainsi souvent retrouvés au sein des mêmes structures, au niveau présynaptique, (excepté les mGluR6 uniquement présents au niveau postysnaptique dans la rétine). mGluR4 est très fortement exprimé dans le cortex cérébelleux, et plus précisément au sein des zones actives des terminaisons présynaptiques de l’une des deux afférences excitatrices, les fibres parallèles, où ils représentent les seuls mGluRs du groupe III fonctionnels, ce qui fait de cette structure un modèle idéal pour l’étude de ces récepteurs. Au cours de ce travail de thèse, à l’aide d’enregistrements électrophysiologiques (Patch-Clamp) et de mesures optiques des influx calciques présynaptiques (fluorométrie), nous nous sommes intéressé aux mécanismes d’action des mGluR4 aux synapses fibres parallèles – interneurones de la couche moléculaire, mais aussi fibres parallèles – cellule de Purkinje. Nous montrons que les mGluR4 inhibent les canaux calciques voltage-dépendants par une voie Gq/PLC/PKC-dépendante, et que ces récepteurs mettent également en jeu des mécanismes parallèles moins dépendants du calcium reposant sur des interactions plus directes avec des protéines impliquées dans les processus d’exocytose.En parallèle, nous avons également contribué à la caractérisation de deux nouveaux outils pharmacologiques (agonistes orthostériques) sélectifs pour mGluR4, dont le manque actuel constitue une limite majeure à l’étude de ces récepteurs dans nombre de structures cérébrales où ils sont exprimés. / Glutamate metabotropic receptors (mGluRs) play an important role in the regulation of excitatory neurotransmission. Group III mGluRs, namely mGluR4, 7 and 8, are known to act as autoreceptors, decreasing the vesicular release of glutamate. These G-Protein Coupled Receptors are widely distributed through the brain, and thus are often localised in the same structures, presynaptically, except for mGluR6 only present postsynaptically in the retina. However, mGluR4 are the most highly expressed in the cerebellar cortex, and more precisely in the active zones of the presynaptic terminals of one of the two excitatory afferent inputs, the parallel fibres, where they are the only group III mGluR functional, turning this structure into an ideal model to study these receptors. In this work, led through electrophysiological (Patch-Clamp) recordings and optical dynamic calcium (fluorometry) measurements, we investigated the mechanisms of action of mGluR4 at both parallel fibre – Purkinje cell synapses and parallel fibre – molecular layer interneuron synapses. We show that activation of mGluR4 inhibits voltage-gated calcium channels by way of a Gq/PLC/PKC-dependent pathway, and that activation of these receptors reduces glutamate release through a complementary mechanism, a more direct interaction with exocytosis proteins. In addition, we also contributed to the characterization of two new pharmacological tools (orthosteric agonists) selective for mGluR4, which lack constitutes a major limit to the study of these receptors throughout the brain.
3

Ultrastructural, molecular and functional heterogeneities of cerebellar granule cell presynaptic terminals / Hétérogénéités ultrastructurales, moléculaires et fonctionnelles aux terminaisons synaptiques des cellules en grain du cervelet

Dorgans, Kevin 03 October 2017 (has links)
Le cervelet est une structure cérébrale impliquée dans la régulation motrice. Dans le cortex cerebelleux, les informations sensorimotrices sont transmises par les cellules en grain. Mon travail de thèse démontre que les connections synaptiques de ces neurones ont des propriétés hétérogènes. D’une synapse à l’autre, j’ai pu observer des variations d’ultrastructure, de composition moléculaire et de fonctionnement au cours de trains de potentiels d’action à haute fréquence. Plus particulièrement, j’ai caractérisé les propriétés de « plasticité à court terme » des synapses unitaires des cellules en grain : 1) Elles sont très différentes d’une synapse à l’autre et peuvent être classées en différentes sous-catégories. 2) Certaines catégories de fonctionnement synaptique reposent sur l’expression de molécules telles que la Synapsine2. 3) La réponse d’un neurone post-synaptique à de hautes fréquences de stimulation dépend de la nature de la synapse activée. / Cerebellum is a brain structure involved in motor regulation and motor learning. In the cerebellar cortex, sensorimotor information is transmitted by granule cells. During my PhD, I demonstrated that the properties of individual granule cell synaptic connections are highly heterogeneous. From one synapse to another, I observed ultrastructural, molecular and functional variability at unitary contacts. More precisely, I assessed the properties of short term plasticity at individual synapses during high frequency trains of stimulation :1) Short term plasticities are highly heterogeneous from one synapse to another and can be classified in sub-categories.2) Some categories of short-term plasticity profiles relie on the expression of molecules such as Synapsin2.3) The response of post-synaptic neuron to high-frequency inputs is dependent on the nature of the activated synaptic contact.
4

Interactions synaptiques entre les interneurones de la couche moléculaire du cervelet / Synaptic interactions among interneurons in the molecular layer of the cerebellum

Alcami Ayerbe, José 30 April 2013 (has links)
Les interneurones de la couche moléculaire du cervelet (ICM: cellules en panier et cellules étoilées) sont connectés par des synapses électriques fréquentes et puissantes chez les jeunes rats et souris autour de la fin de la deuxième semaine postnatale. Les courants capacitifs des ICM montrent une composante lente qui reflète la charge des interneurones couplés électriquement. Leur analyse permet de quantifier le nombre de cellules directement couplées à une cellule et le nombre équivalent de cellules couplées (Alcami et Marty, soumis), et d'établir une difference de couplage entre les cellules en panier et les cellules étoilées pendant le développement postnatal. Elle a mené à proposer une topologie de réseau des cellules en panier. La force du couplage peut être modulée par les courants intrinsèques, dont Ih dans le domaine hyperpolarisant. Les synapses électriques modifient la propagation et les patrons d'activité dans le réseau des ICM en réponse à une excitation du réseau.L'étude de la connectivité des ICM par des synapses chimiques GABAergiques nous a mené à réexaminer les sources d'erreur des mesures d'activité électrique en configuration cellule attachée (Alcami et coll., 2012). Les mesures en cellule attachée peuvent modifier l'activité électrique des ICM en introduisant un couplage conductif entre la pipette d'enregistrement et l'intérieur cellulaire, résultant d'une combinaison de mécanismes de couplage passifs et actifs. / Molecular layer interneurons of the cerebellum (MLIs: basket cells and stellate cells) are connected by frequent and strong electrical synapses in young rats and mice around the end of the second postnatal week. Capacitive currents of MLIs show a slow component that reflects the charge of electrically-coupled MLIs. The analysis of capacitive currents makes it possible to quantify the number of directly connected cells and the equivalent number of coupled cells (Alcami and Marty, submitted). They were used to show a difference in coupling between basket and stellate cells and propose a model of the basket cell coupled network. Electrical coupling strength can be modulated by intrinsic currents, like the h current in the hyperpolarizing range. Electrical synapses modify the propagation and the patterns of activity in the MLI network, when the network is excited.The study of connectivity of MLIs by chemical GABAergic synapses led us to reevaluate the sources of error of cell-attached recordings (Alcami et al., 2012). Cell-attached measurements can modify cellular electrical activity of MLIs, by introducing a conductif coupling between the recording pipette and the cell interior, resulting from a combination of passive and active coupling.

Page generated in 0.0415 seconds