• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of the Munc13 - CaM Interaction / Charakterisierung der Munc13-CaM-Wechselwirkung

Dimova, Kalina 04 May 2009 (has links)
No description available.
2

Dynamic synapses in neural information processing : Examining the influence of short-term synaptic plasticity on neural coding / Dynamiska synapser i neural bearbetning av information

Spolander, Oscar January 2022 (has links)
Short-term synaptic plasticity (STP) is a phenomenon that has been closely associated with how neurons communicate with each other. I study communication between neurons tied to synapses endowed with short-term plasticity (dynamic synapses). This is achieved by using mathematical models of neural phenomena that align with those found in real neurons. In addition to dynamic synapses, a model of static synapses is created, on which control experiments are performed. The response of postsynaptic neurons, to spiking-sequences from presynaptic neurons, is examined in order to infer how information is transmitted across cells. During these computational experiments, it was found that the range of firing rates to which postsynaptic neurons responded, depends heavily on certain parameters of STP-processes. These parameters are the time constants for short-term synaptic depression and facilitation: the two time-dependent processes that define STP. Some results confirm those of the existing literature, while this work places an added emphasis on the sensitivity of the propagation of rate codes to the aforementioned parameters of synapses. This is relevant because it has been found that real synapses display a wide range of time constants in the nervous system. Hence, understanding how this variation carries a significant impact on rate-coding schemes is vital when engaging in further studies of neural rate codes. / Synaptisk plasticitet på kort sikt (STP) är ett fenomen som har blivit nära förknippat med hur nervceller kommunicerar med varandra. Jag studerar kommunikation mellan nervceller som är kopplade till synapser som är försedda med kortsiktig synaptisk plasticitet (dynamiska synapser). Detta har åstadkommits genom matematisk modellering av fenomen i nervsystemet som är konsekventa med de som är funna i verkliga nervceller. Utöver dynamiska synapser, så skapas även en modell av statiska synapser på vilka kontrollexperiment utövas. Gensvaret av postsynaptiska nervceller, på sekvenser av nervimpulser från presynaptiska nervceller, kartläggs för att studera hur information transmitteras mellan celler. I dessa beräkningsmässiga experiment så var det funnet att spannet av frekvenser för vilka postsynaptiska nervceller visade gensvar, var kraftigt beroende på specifika parametrar för STP-processer. Dessa parametrar är tidskonstanterna för synaptisk depression på kort sikt samt synaptisk facilitering på kort sikt: de två tidsberoende processerna som definierar STP. Vissa resultat bekräftade de som återfinns i den befintliga literaturen, samtidigt som detta arbete placerar adderad tyngd på känsligheten som frekvensmässiga koder uppvisar för ovannämnda synaptiska parametrar. Detta är relevant eftersom det är känt att verkliga synapser uppvisar ett brett spann av tidskonstanter i nervsystemet. Följdaktigen är det centralt att förstå hur denna variation innehar signifikant påverkan på frekvenskoder vid fortsatta studier inom frekvensmässiga neurala koder.
3

Ultrastructural, molecular and functional heterogeneities of cerebellar granule cell presynaptic terminals / Hétérogénéités ultrastructurales, moléculaires et fonctionnelles aux terminaisons synaptiques des cellules en grain du cervelet

Dorgans, Kevin 03 October 2017 (has links)
Le cervelet est une structure cérébrale impliquée dans la régulation motrice. Dans le cortex cerebelleux, les informations sensorimotrices sont transmises par les cellules en grain. Mon travail de thèse démontre que les connections synaptiques de ces neurones ont des propriétés hétérogènes. D’une synapse à l’autre, j’ai pu observer des variations d’ultrastructure, de composition moléculaire et de fonctionnement au cours de trains de potentiels d’action à haute fréquence. Plus particulièrement, j’ai caractérisé les propriétés de « plasticité à court terme » des synapses unitaires des cellules en grain : 1) Elles sont très différentes d’une synapse à l’autre et peuvent être classées en différentes sous-catégories. 2) Certaines catégories de fonctionnement synaptique reposent sur l’expression de molécules telles que la Synapsine2. 3) La réponse d’un neurone post-synaptique à de hautes fréquences de stimulation dépend de la nature de la synapse activée. / Cerebellum is a brain structure involved in motor regulation and motor learning. In the cerebellar cortex, sensorimotor information is transmitted by granule cells. During my PhD, I demonstrated that the properties of individual granule cell synaptic connections are highly heterogeneous. From one synapse to another, I observed ultrastructural, molecular and functional variability at unitary contacts. More precisely, I assessed the properties of short term plasticity at individual synapses during high frequency trains of stimulation :1) Short term plasticities are highly heterogeneous from one synapse to another and can be classified in sub-categories.2) Some categories of short-term plasticity profiles relie on the expression of molecules such as Synapsin2.3) The response of post-synaptic neuron to high-frequency inputs is dependent on the nature of the activated synaptic contact.
4

Molecular mechanisms of presynaptic plasticity and function in the mammalian brain

Weyrer, Christopher January 2018 (has links)
Synaptic plasticity describes efficacy changes in synaptic transmission and ranges in duration from tens to hundreds of milliseconds (short-term), to hours and days (long-term). Short-term plasticity plays crucial roles in synaptic computation, information processing, learning, working and short-term memory as well as its dysfunction in psychiatric and neurodegenerative diseases. The main aim of my PhD thesis was to determine the molecular mechanisms of different forms of presynaptic plasticity. Short-term facilitation increases neurotransmitter release in response to a high-frequency pair (paired-pulse facilitation; PPF) or train (train facilitation; TF) of presynaptic stimuli. Synaptotagmin 7 (Syt7) has been shown to act as residual calcium (Ca$_{res}$) sensor for PPF and TF at various synapses. Syt7 also seems to be involved in recovery from depression, whereas its role in neurotransmission remains controversial. My aim was to express Syt7 in a synapse where it is not normally found and determine how it affects short-term synaptic plasticity. Immunohistochemistry indicated that Syt7 is not localized to cerebellar climbing fibers (CFs). Wild-type (WT) and Syt7 knockout (KO) recordings at CF to Purkinje cell (CF-PC) synapses established that at near-physiological external calcium (Ca$_{ext}$) levels both genotypes displayed similar recovery from paired-pulse depression. In low Ca$_{ext}$,WT CF-PC synapses showed robust PPF, which turned out to be independent of Syt7. All my experiments strongly suggested that WT CFs do not express native Syt7, but display low Ca$_{ext}$ CF-PC PPF and TF. Thus, channelrhodopsin-2 and Syt7 were bicistronically expressed via AAV9 virus in CFs. This ectopic Syt7 expression in CFs led to big increases in low-Ca$_{ext}$ CF-PC facilitation, more than doubling PPF and more than tripling TF. While overexpression of Syt7 might turn out to have an effect on the initial release probability (pr), the observed CF-PC facilitation increase still critically depended on presynaptic Syt7 expression. And when comparing only cells in a defined EPSC1 amplitude range, the Syt7-induced increase in low-Ca$_{ext}$ PPF could not be accounted for by changes in initial pr, suggesting a general role for Syt7 as calcium sensor for facilitation. Another form of short-term plasticity, post-tetanic potentiation (PTP), is believed to be mediated presynaptically by calcium-dependent protein kinase C (PKC) isoforms that phosphorylate Munc18-1 proteins. It is unknown how generally applicable this mechanism is throughout the brain and if other proteins might be able to modulate PTP. Combining genetic (PKCαβy triple knockout [TKO] and Munc18-1SA knock-in [Munc18 KI] mice, in which Munc18- 1 cannot get phosphorylated) with pharmacological tools (PKC inhibitor GF109203), helped us show that PTP at the cerebellar parallel fiber to Purkinje cell (PF-PC) synapse seems to depend on PKCs but seems mostly independent of Munc18-1 phosphorylation. In addition, compared to WT animals, genetic elimination of presynaptic active zone protein Liprin-α3 led to similar PF-PC PTP and paired-pulse ratios (PPRs). At the hippocampal CA3-CA1 synapse previous pharmacological studies suggested that PKC mediates PTP. A genetic approach helped to show that calcium dependent PKCs do not seem to be required for CA3-CA1 PTP. Pharmacologically inhibiting protein kinase A as well as genetically eliminating Syt7 also had no effect on CA3-CA1 PTP. In addition, Ca IM-AA mutant mice, in which Ca$_{v}$2.1 channels have a mutated IQ-like motif (IM) so that it cannot get bound by calcium sensor proteins any more, not only displayed regular PTP, but also normal PPF and TF at CA3-CA1 synapses. In conclusion, my PhD thesis helped further characterize different forms of presynaptic plasticity, underlined that short-term synaptic plasticity can be achieved through diverse mechanisms across the Mammalian brain and supported a potentially general role for synaptotagmin 7 acting as residual calcium sensor for facilitation.
5

Modulation of cerebellar Purkinje cell discharge by subthreshold granule cell inputs / Modulation de la décharge des cellules de Purkinje du cervelet par des entrées sous-seuils des cellules des grains

Grangeray-Vilmint, Anais 02 June 2016 (has links)
La décharge des cellules de Purkinje (CP), neurone de sortie du cortex cérébelleux, joue un rôle majeur dans le contrôle moteur. Les CP reçoivent des entrées excitatrices provenant des cellules des grains (CG), lesquelles génèrent également une inhibition antérograde sur les CP via l’activation d’interneurones de la couche moléculaire (IN). Lors de ma thèse, j’ai étudié l’influence simultanée de la balance excitation-inhibition (E/I) et des plasticités à court terme aux synapses CG-IN-CP sur la décharge des CP, par des techniques d’électrophysiologie, d’optogénétique et de simulation. Ces travaux démontrent l’existence d’une hétérogénéité d’E/I dans le cortex cérébelleux ainsi qu’une grande diversité de modulation des CP en réponse à la stimulation de CG. Le nombre de stimulation des CG influence fortement la direction et l’intensité de la modulation observée. Enfin, la combinaison de plasticités à court terme et d’E/I génère dans la décharge des CP des motifs de réponses complexes mais reproductibles, ayant sans doute un rôle essentiel dans l’encodage sensoriel. / Rate and temporal coding in Purkinje cells (PC), the sole output of the cerebellar cortex, play a major role in motor control. PC receives excitatory inputs from granule cells (GC) which also provide feedforward inhibition on PC through the activation of molecular layer interneurons (MLI). In this thesis, I studied the influence of the combined action of excitation/inhibition (E/I) balance and short-term plasticity of GC-MLI-PC synapses on PC discharge, by using electrophysiological recordings, optogenetic stimulation and modelling. This work demonstrates that E/I balances are not equalized in the cerebellar cortex and showed a wide distribution of PC discharge modulation in response to GC inputs, from an increase to a shut down of the discharge. The number of stims in GC bursts strongly controls the strength and sign of PC modulation. Lastly, the interplay between short-term plasticity and E/I balance implements complex but reproducible output patterns of PC responses to GC inputs that should play a key role in stimulus encoding by the cerebellar cortex.

Page generated in 0.0809 seconds