Spelling suggestions: "subject:"potentiel d’action"" "subject:"pontentiel d’action""
1 |
Empreinte développementale des cellules sensorielles auditives / Developmental imprint of auditory sensory cellsHarrus, Anne-Gabrielle 30 November 2018 (has links)
Les cellules ciliées internes (CCI) sont les cellules sensorielles de l'organe de l'audition, elles transforment les ondes sonores en messages nerveux. Avant l’entrée en fonction de la cochlée, les CCI émettent spontanément des potentiels d’action (PA) calciques, ce qui active la voie auditive ascendante et assure le développement de l’axe tonotopique, à savoir la représentation du codage en fréquence, dans chaque relais de la voie auditive. Le profil et les mécanismes à l’origine des PA des CCI sont fortement débattus. Nous nous sommes donc attachés à étudier l’empreinte développementale des cellules sensorielles, c'est à dire déterminer le profil et les mécanismes à l’origine de leur activité.Après avoir incubé l’épithélium neuro-sensoriel avec la sonde calcique Fura2-AM, nous avons observé des vagues calciques se propageant le long des cellules de soutien et des cellules sensorielles. Plus précisément, l’activité des cellules ciliées se caractérisait par des élévations transitoires de calcium (pics calciques) à intervalles de temps réguliers. Nous avons ensuite démontré que les pics calciques des CCI correspondaient bien à des bouffées de PA en mesurant simultanément les oscillations calciques et l’émission de PA en patch-clamp. La fréquence, la durée et la distribution temporelle des pics calciques des CCI étaient en grande partie invariantes le long de l’axe base-apex de la cochlée. Enfin, les cellules voisines montraient une activité fortement synchrone à l’inverse des cellules spatialement éloignées. Ces résultats indiquent donc que l’activité des CCI est majoritairement identique le long de l’axe tonotopique de la cochlée.Nous nous sommes ensuite intéressés au mécanisme responsable de l’activité spontanée, la dépendance à l’ATP. L’incubation d’apyrase, une ecto-nucléotidase, entraine une diminution de l’activité des cellules de soutien, à savoir une réduction de l’aire et de la vitesse de propagation des vagues calciques. En revanche, l'activité des CCI n'est pas altérée par la déplétion d’ATP. Ces résultats suggèrent 2 mécanismes distincts, le premier ATP-dépendant et le second ATP-indépendant dans les cellules de soutien et sensorielles, respectivement.L’ensemble de ces résultats indique que la maturation des centres supérieurs serait déterminée par l’activation synchrone d’un nombre limité de cellules sensorielles. / During development, the sensory cells of the cochlea, the inner hair cells (IHCs), fire spontaneous calcium action potentials. This spontaneous spiking activity at the pre-hearing stage allows the IHCs to automatically stimulate the auditory nerve fibers and hence, ensures the proper shaping of the tonotopic organization along the ascending auditory pathway. Spontaneous spiking patterns may depend on the IHCs position on the cochlea (the tonotopic axis). Those patterns may also rely on ATP secretion from neighboring supporting cells. In this study, we used calcium imaging in the immature neuro-sensory epithelium of the cochlea, the Kölliker´s organ, to gain insights in the IHCs spiking activity. After loading the Kölliker´s organ with the calcium dye fura-2 AM, propagation of spontaneous calcium waves was readily observed across supporting and sensory cells. Both basal and apical IHCs were characterized by similar spontaneous calcium transients interspaced with silent periods, reminiscent of bursts of action potential recorded in patch-clamp. In addition, neighboring cells show a strong degree of synchronous activity. Incubation with apyrase, which hydrolyzes ATP, prevents the spontaneous calcium increase that propagates across the supporting cells within the Kölliker's organ. However, it leaves the spontaneous calcium transients in IHCs mostly unaffected. All these results show that the tonotopic map refinement in higher auditory centers comes from a coordinated activity of neighboring sensory cells, whose activity seems to be independent of ATP
|
2 |
Intracellular and extracellular signatures of action potentials initiated in the axon / Signatures intracellulaires et extracellulaires des potentiels d'action initiés dans l'axoneTelenczuk, Maria 23 September 2016 (has links)
Le potentiel d'action est un des événements de signalisation majeurs du cerveau. Ce travail est dédié à l'étude de la génération du potentiel d'action, et son impact dans le potentiel extracellulaire ainsi que dans le réseau local. Pour ce faire nous avons abordé trois questions principales. Premièrement, nous nous sommes intéressés à comprendre pourquoi les potentiels d'action ont souvent un début brutal dans les enregistrements somatiques des neurones de mammifères. Nous avons montré que l'hypothèse du couplage résistive critique explique comment le potentiel d'action est initié dans le segment initial de l'axone pour fournir le 'kink' dans le soma. Deuxièmement, nous avons évalué l'impact de la position du segment initial sur le potentiel extracellulaire. De façon importante, nous démontrons que l’impact de la position du segment initial axonal dans la forme et l’amplitude du potentiel d’action dépend de la distance entre le site d’enregistrement et l’axone, et de sa position par rapport à l’axe soma-segment initial axonal.Finalement, nous avons exploré l’impact d’un seul potentiel d’action dans l’activité de réseau, car cet effet est souvent questionné. Nos montrons qu’un seul potentiel d’action d’un neurone pyramidal hippocampique peut commencer l’activité «sharp-wave ripple” qui consiste en l’activation de multiple interneurones. L’ensemble de nos résultats montre que les potentiels d’action sont des événements complexes modelés par la biochimie de le membrane neuronale et la morphologie de l’axone. De plus, ces caractéristiques neuronales modulent fortement leur impact dans le champ extracellulaire et l’activité de réseau. / The action potential is considered one of the major signaling events in the brain.Although it has been studied for years, many questions remain unanswered. The present work is dedicated to the study of action potential generation, its impact on extracellular field and local network establishment. We considered three questions: Firstly, (i) we asked why mammalian neurons often have characteristically sharp onset in the somatic recordings of action potentials. We show that the Critical Resistive Coupling Hypothesis is sufficient to explain how the action potential is initiated in the axon initial segment to provide for the ‘kink’ in the soma, while the Back propagation Hypothesis is not sufficient to explain it. Next, (ii)we asked how the placement of the axon initial segment might affect the extracellular field. We show that the impact of the axon initial segment position on the shape and amplitude ofextracellular action potential depends on the distance between the recording site andthe axon and on its position along the soma–axon initial segment axis. Finally, (iii)we inquired if a single action potential might have an effect on the network activity. Weshow that a single action potential from a single pyramidal neuron in the hippocampus can trigger sharp-wave ripple activity consisting of the firing of multiple interneurons.Altogether, our results show that action potentials are complex events shaped by the biochemistry of the neuronal membrane and morphology of the axon. In addition these features strongly modulate the neuron’s impact on the extracellular field and network activity.
|
3 |
Study of the Mechanisms Underlying Neurostimulation Induced by Low- Energy Pulsed Ultrasound : Towards Approaches for the Management of Cancer-Related Chronic Pain / Étude des mécanismes de neurostimulation par ultrasons pulsés de faible énergie et applications à la gestion des douleurs chroniques d’origine tumoraleVion, Jérémy 27 March 2019 (has links)
Les applications thérapeutiques de la neurostimulation ultrasonore représentent un terrain de recherche très prometteur, auquel il fait défaut un modèle valide décrivant les biomécanismes sous-jacents. Le premier objectif de ce travail de thèse était de proposer un modèle nerveux propice à une étude mécanistique du phénomène de neurostimulation ultrasonore. L’objectif suivant était de prouver l’intérêt d’exploiter ce modèle pour recueillir des informations concernant les interactions biophysiques ayant lieu entre les ultrasons (US) focalisés et le système nerveux. La majorité des études réalisées a porté sur le système nerveux du ver de terre commun, Lumbricus terrestris. Elles ont consisté d’une part à comparer entre elles les caractéristiques temporelles des réponses nerveuses associées à différentes modalités de stimulation, et d’autre part à évaluer l’influence de chacun des paramètres acoustiques du stimulus ultrasonore sur le taux de succès de neurostimulation (NSR). Dans les deux cas, la méthodologie suivie reposait sur l’administration de différents stimuli aléatoirement alternés. Complémentairement, le rôle joué par la cavitation acoustique a été étudié. La faisabilité de la stimulation du système nerveux du ver de terre, au moyen d’US et dans des conditions in vivo, a été prouvée. Les aires sensorielles et la dynamique de réponses associées aux trois modalités de stimulation ont été caractérisées. Il a été conclu que, dans ce modèle nerveux invertébré, pendant le phénomène de neurostimulation ultrasonore, les structures nerveuses interagissant fonctionnellement avec les US sont les nerfs afférents segmentaux. Les résultats des études paramétriques ont indiqué que le NSR augmente avec l’intensité acoustique, la durée de pulse et la fréquence de répétition des pulses. Il a été proposé que la structure nerveuse visée est sensible à la « force de radiation moyenne » transportée par le stimulus US, indépendamment des paramètres menant à cette valeur / Ultrasound neurostimulation applied to therapy is a promising field of research but still lacks of a validated model explaining the biomechanisms underlying the phenomenon. The first objective of this PhD thesis was to propose a nervous model suited for a mechanistic study of the phenomenon of ultrasound neurostimulation. In a second time, it was intended to practically prove the interest of this model by using it to gain knowledge regarding the biophysical interactions between focused ultrasound and the nervous system. Studies were performed on the nervous system of the anesthetized earthworm, Lumbricus terrestris. They consisted in either comparing the timings of the nervous responses associated with different modalities of stimulation, or evaluating the influence of each acoustic parameter on the neurostimulation success rate (NSR). In both cases, the methodology followed was to administer randomly mixed sequences of different stimuli. The feasibility of the in vivo activation of the anesthetized earthworm’s nervous system was proven. The sensory fields and response dynamics associated with the three modalities of stimulation were characterized. The parametric studies indicated that the NSR increases with pulse amplitude, pulse duration, pulse repetition frequency, but is more weakly influenced by the harmonic content and number of pulses. By applying a causal approach to interpret the results, we concluded that, in this nervous model, during the phenomenon of ultrasound neurostimulation, the structures functionally responding to the ultrasound stimulus are the segmental afferent nerves. We hypothesize that the main interaction with the axonal regions is mediated by ultrasound radiation force, without excluding the involvement of other biomechanisms
|
4 |
Méthodes et systèmes pour la détection adaptative et temps réel d’activité dans les signaux biologiques / Systems and methods for adaptive and real-time detection of biological activityQuotb, Adam 12 October 2012 (has links)
L’intéraction entre la biologie et l’électronique est une discpline en pleine essort. De nom-breux systèmes électroniques tentent de s’interconnecter avec des tissus ou des cellules vivantesafin de décoder l’information biologique. Le Potentiel d’action (PA) est au coeur de codagebiologique et par conséquent il est nécéssaire de pouvoir les repérer sur tout type de signal bio-logique. Par conséquent, nous étudions dans ce manuscrit la possibilité de concevoir un circuitélectronique couplé à un système de microélectrodes capable d’effectuer une acquisition, unedétection des PAs et un enregistrement des signaux biologiques. Que ce soit en milieu bruitéou non, nous considérons le taux de détection de PA et la contrainte de temps réel commedes notions primordiales et la consommation en silicium comme un prix à payer. Initialementdéveloppés pour l’étude de signaux neuronaux et pancréatiques, ces systèmes conviennent par-faitement pour d’autres type de cellules. / Interaction between biology and electronic is in expansion. Many electronic systems aretrying to interconnect with tissues or living cells to decode biological information. The ActionPotential (AP) is the heart of biological coding and therefore it is necessary to be able to locateit from any type of biological signal. Therefore, we study in this manuscript the possibility ofdesigning an electronic circuit coupled to microelectrodes capable of acquisition, detection ofPAs and recording of biological signals. Whether or not in a noisy environment, we consider thedetection rate of PA and the real time-computing constraint as an hard specificationand andsilicon area as a price to pay. Initially developed for the study of neural signals and pancreatic,these systems are ideal for other types of cells.
|
5 |
Modulation of cerebellar Purkinje cell discharge by subthreshold granule cell inputs / Modulation de la décharge des cellules de Purkinje du cervelet par des entrées sous-seuils des cellules des grainsGrangeray-Vilmint, Anais 02 June 2016 (has links)
La décharge des cellules de Purkinje (CP), neurone de sortie du cortex cérébelleux, joue un rôle majeur dans le contrôle moteur. Les CP reçoivent des entrées excitatrices provenant des cellules des grains (CG), lesquelles génèrent également une inhibition antérograde sur les CP via l’activation d’interneurones de la couche moléculaire (IN). Lors de ma thèse, j’ai étudié l’influence simultanée de la balance excitation-inhibition (E/I) et des plasticités à court terme aux synapses CG-IN-CP sur la décharge des CP, par des techniques d’électrophysiologie, d’optogénétique et de simulation. Ces travaux démontrent l’existence d’une hétérogénéité d’E/I dans le cortex cérébelleux ainsi qu’une grande diversité de modulation des CP en réponse à la stimulation de CG. Le nombre de stimulation des CG influence fortement la direction et l’intensité de la modulation observée. Enfin, la combinaison de plasticités à court terme et d’E/I génère dans la décharge des CP des motifs de réponses complexes mais reproductibles, ayant sans doute un rôle essentiel dans l’encodage sensoriel. / Rate and temporal coding in Purkinje cells (PC), the sole output of the cerebellar cortex, play a major role in motor control. PC receives excitatory inputs from granule cells (GC) which also provide feedforward inhibition on PC through the activation of molecular layer interneurons (MLI). In this thesis, I studied the influence of the combined action of excitation/inhibition (E/I) balance and short-term plasticity of GC-MLI-PC synapses on PC discharge, by using electrophysiological recordings, optogenetic stimulation and modelling. This work demonstrates that E/I balances are not equalized in the cerebellar cortex and showed a wide distribution of PC discharge modulation in response to GC inputs, from an increase to a shut down of the discharge. The number of stims in GC bursts strongly controls the strength and sign of PC modulation. Lastly, the interplay between short-term plasticity and E/I balance implements complex but reproducible output patterns of PC responses to GC inputs that should play a key role in stimulus encoding by the cerebellar cortex.
|
Page generated in 0.1132 seconds