• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Récepteur présynaptique métabotropique du Glutamate de type 4 (mGluR4) : fonctions synaptiques et mécanismes d’action dans le cervelet / Presynaptic Metabotropic Glutamate Receptors type 4 (mGluR4) : Synaptic Functions and Mechanisms of Action in the Cerebellar Cortex

Bessiron, Thomas 28 January 2014 (has links)
Les récepteurs métabotropiques au glutamate (mGluRs) jouent un rôle important dans la régulation de la neurotransmission excitatrice. Les mGluRs du groupe III (mGluR4, 7 et 8), sont connus pour agir en tant qu’autorécepteurs, diminuant la libération vésiculaire de glutamate. Ces récepteurs couplés aux protéines G ont une vaste distribution cérébrale, et sont ainsi souvent retrouvés au sein des mêmes structures, au niveau présynaptique, (excepté les mGluR6 uniquement présents au niveau postysnaptique dans la rétine). mGluR4 est très fortement exprimé dans le cortex cérébelleux, et plus précisément au sein des zones actives des terminaisons présynaptiques de l’une des deux afférences excitatrices, les fibres parallèles, où ils représentent les seuls mGluRs du groupe III fonctionnels, ce qui fait de cette structure un modèle idéal pour l’étude de ces récepteurs. Au cours de ce travail de thèse, à l’aide d’enregistrements électrophysiologiques (Patch-Clamp) et de mesures optiques des influx calciques présynaptiques (fluorométrie), nous nous sommes intéressé aux mécanismes d’action des mGluR4 aux synapses fibres parallèles – interneurones de la couche moléculaire, mais aussi fibres parallèles – cellule de Purkinje. Nous montrons que les mGluR4 inhibent les canaux calciques voltage-dépendants par une voie Gq/PLC/PKC-dépendante, et que ces récepteurs mettent également en jeu des mécanismes parallèles moins dépendants du calcium reposant sur des interactions plus directes avec des protéines impliquées dans les processus d’exocytose.En parallèle, nous avons également contribué à la caractérisation de deux nouveaux outils pharmacologiques (agonistes orthostériques) sélectifs pour mGluR4, dont le manque actuel constitue une limite majeure à l’étude de ces récepteurs dans nombre de structures cérébrales où ils sont exprimés. / Glutamate metabotropic receptors (mGluRs) play an important role in the regulation of excitatory neurotransmission. Group III mGluRs, namely mGluR4, 7 and 8, are known to act as autoreceptors, decreasing the vesicular release of glutamate. These G-Protein Coupled Receptors are widely distributed through the brain, and thus are often localised in the same structures, presynaptically, except for mGluR6 only present postsynaptically in the retina. However, mGluR4 are the most highly expressed in the cerebellar cortex, and more precisely in the active zones of the presynaptic terminals of one of the two excitatory afferent inputs, the parallel fibres, where they are the only group III mGluR functional, turning this structure into an ideal model to study these receptors. In this work, led through electrophysiological (Patch-Clamp) recordings and optical dynamic calcium (fluorometry) measurements, we investigated the mechanisms of action of mGluR4 at both parallel fibre – Purkinje cell synapses and parallel fibre – molecular layer interneuron synapses. We show that activation of mGluR4 inhibits voltage-gated calcium channels by way of a Gq/PLC/PKC-dependent pathway, and that activation of these receptors reduces glutamate release through a complementary mechanism, a more direct interaction with exocytosis proteins. In addition, we also contributed to the characterization of two new pharmacological tools (orthosteric agonists) selective for mGluR4, which lack constitutes a major limit to the study of these receptors throughout the brain.
2

More than a Metabolite: An Evaluation of the Potential Role of L-serine-O-phosphate as the Endogenous Agonist for the Group III Metabotropic Glutamate Receptors

Antflick, Jordan 20 August 2012 (has links)
The Group III metabotropic glutamate receptors (mGluR) are located presynaptically on axon terminals and act as autoreceptors and heteroreceptors by inhibiting neurotransmitter release. Much has been learned about these receptors through exogenous application of L-serine-O-phosphate (L-SOP), an endogenous amino acid derivative and known activator of the Group III mGluRs. We hypothesized that L-SOP is the endogenous co-agonist at the high affinity Group III mGluR, mGluR4. We found the EC50 of L-SOP at mGluR4 was 0.5 μM, and determined that the concentration of L-SOP in whole brain was approximately 5 μM. An immunocytochemical survey revealed that cells containing the enzymatic machinery necessary for L-SOP synthesis and metabolism were observed in two brain regions known to express mGluR4, namely, cerebellum and hippocampus. In the cerebellum, the L-SOP synthetic and metabolic enzymes were found in Bergmann glia and Purkinje cells, two cells which form a tripartite synapse with parallel fiber axon terminals where the mGluR4 subtype is exclusively expressed at high levels. In the hippocampus, the L-SOP metabolic enzyme was detected in young neurons emanating from the neurogenic subventricular zone. Attempts to raise endogenous levels of L-SOP by crippling the L-SOP metabolizing enzyme (phosphoserine phosphatase), over-expressing the L-SOP synthesizing enzyme (phosphoserine aminotransferase), or through dietary protein restriction, to study the effects on neurotransmission and neurodevelopment in the central nervous system (CNS) were unsuccessful, suggesting that the production of L-SOP remains stable despite manipulation of the synthetic and metabolic enzymes. Finally, the ability of L-SOP to modulate glutamate release from presynaptic terminals was examined in cerebellar synaptosomes. Co-incident activation of presynaptic mGluR4 and presynaptic GABAA receptors facilitated glutamate release, suggesting that simultaneous activation of parallel fibers and Bergmann glia may serve to enhance synaptic transmission. This observation expands the traditional view of Group III mGluRs acting solely as inhibitory autoreceptors. Taken together, these results provide compelling evidence to support the hypothesis that L-SOP is the endogenous agonist at mGluR4, and possibly other Group III mGluRs.
3

More than a Metabolite: An Evaluation of the Potential Role of L-serine-O-phosphate as the Endogenous Agonist for the Group III Metabotropic Glutamate Receptors

Antflick, Jordan 20 August 2012 (has links)
The Group III metabotropic glutamate receptors (mGluR) are located presynaptically on axon terminals and act as autoreceptors and heteroreceptors by inhibiting neurotransmitter release. Much has been learned about these receptors through exogenous application of L-serine-O-phosphate (L-SOP), an endogenous amino acid derivative and known activator of the Group III mGluRs. We hypothesized that L-SOP is the endogenous co-agonist at the high affinity Group III mGluR, mGluR4. We found the EC50 of L-SOP at mGluR4 was 0.5 μM, and determined that the concentration of L-SOP in whole brain was approximately 5 μM. An immunocytochemical survey revealed that cells containing the enzymatic machinery necessary for L-SOP synthesis and metabolism were observed in two brain regions known to express mGluR4, namely, cerebellum and hippocampus. In the cerebellum, the L-SOP synthetic and metabolic enzymes were found in Bergmann glia and Purkinje cells, two cells which form a tripartite synapse with parallel fiber axon terminals where the mGluR4 subtype is exclusively expressed at high levels. In the hippocampus, the L-SOP metabolic enzyme was detected in young neurons emanating from the neurogenic subventricular zone. Attempts to raise endogenous levels of L-SOP by crippling the L-SOP metabolizing enzyme (phosphoserine phosphatase), over-expressing the L-SOP synthesizing enzyme (phosphoserine aminotransferase), or through dietary protein restriction, to study the effects on neurotransmission and neurodevelopment in the central nervous system (CNS) were unsuccessful, suggesting that the production of L-SOP remains stable despite manipulation of the synthetic and metabolic enzymes. Finally, the ability of L-SOP to modulate glutamate release from presynaptic terminals was examined in cerebellar synaptosomes. Co-incident activation of presynaptic mGluR4 and presynaptic GABAA receptors facilitated glutamate release, suggesting that simultaneous activation of parallel fibers and Bergmann glia may serve to enhance synaptic transmission. This observation expands the traditional view of Group III mGluRs acting solely as inhibitory autoreceptors. Taken together, these results provide compelling evidence to support the hypothesis that L-SOP is the endogenous agonist at mGluR4, and possibly other Group III mGluRs.

Page generated in 0.0134 seconds