Spelling suggestions: "subject:"allergique"" "subject:"gabaergique""
1 |
Caractérisation de la potentialisation à long terme des interneurones de la région CA1 de l'hippocampe chez la sourisLapointe, Valérie January 2002 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Régulation rapide du co-transporteur neuronal K/Cl KCC2 par l'inhibition et l'excitation dans les neurones matures. / Rapid regulation of the neuronal K/Cl co-transporter KCC2 by excitation and inhibition in mature neurons.Heubl, Martin 12 February 2016 (has links)
La polarité et l'efficacité de la transmission GABAergique dépendent de la concentration intra-neuronale en chlore. Dans les neurones matures, le co-transporteur K+/Cl- KCC2 maintient la concentration intracellulaire en chlore à un niveau bas, permettant ainsi une réponse inhibitrice du GABA. En plus de son rôle dans la transmission GABAergique, KCC2 régule aussi l'efficacité de la transmission glutamatergique en contrôlant la spinogenèse, l'exocytose et la dynamique membranaire des récepteurs AMPA. Du fait de son importance aux synapses excitatrices et inhibitrices, il est crucial de comprendre les mécanismes qui régulent l'expression membranaire et la fonction de KCC2. La régulation de KCC2 par l'activité glutamatergique excitatrice ayant été bien caractérisée, il reste à déterminer si l'expression et la fonction de KCC2 sont régulées par l'activité inhibitrice GABAergique. Pendant ma thèse, j'ai montré que KCC2 est en effet directement régulé par la transmission GABAergique. J'ai trouvé que l'activation aigue des RGABAA confine KCC2 dans la membrane alors que le blocage des RGABAA augmente la dynamique membranaire et l'internalisation du transporteur. Les mécanismes moléculaires impliquent le chlore comme messager secondaire, la kinase WNK1 et la phosphorylation de KCC2 sur des résidus thréonines clés. J'ai ensuite pu montrer que cette régulation à un impact aux synapses inhibitrice et excitatrice. Mon travail propose un mécanisme nouveau de la régulation de l'homéostasie du chlore par l'inhibition GABAergique. Ainsi les neurones peuvent compenser une augmentation ou une diminution en chlore neuronale par une adaptation rapide de KCC2 à la surface cellulaire. / The polarity and efficacy of GABAergic neurotransmission depends on the intraneuronal chloride concentration. In mature neurons chloride extrusion by the K+/Cl- co-transporter KCC2 permits an inhibitory influx upon activation of GABAA receptors. In addition to its role in GABAergic transmission, KCC2 regulates also glutamatergic transmission in an ion-independent manner by controlling spinogenesis and AMPAR exocytosis and membrane diffusion in dendritic spines. Knowing its pivotal role at central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. While regulation of KCC2 by neuronal excitation is well documented, it is still unknown whether neuronal inhibition itself can regulate the transporter’s membrane expression and/or activity. During my PhD I was able to demonstrate a direct regulation of KCC2 membrane diffusion and stability by GABAA receptor-mediated inhibition and I characterized the underlying signaling cascade. I found that activation of GABAAR decreased KCC2 lateral diffusion while GABAAR blockade led to increased membrane dynamics and internalization of the transporter. I could show that KCC2 regulation by neuronal inhibition requires chloride as second intracellular messenger and chloride-sensing WNK1 kinase that directly phosphorylate KCC2 on key Threonine residues. This regulation has a functional impact at both excitatory and inhibitory synapses. My work reports a novel and rapid mechanism of control of chloride homeostasis by GABAA receptor-mediated inhibition that allows maintaining the polarity and activity of GABAA receptors constant.
|
3 |
Intérêts des récepteurs 5-HT4 dans la pathologie Alzmeimer : étude préclinique comportementale et électrophysiologie sur tranche d'hippocampe de souris / Interest of 5-HT4 receptors in Alzheimer’s disease : behavioral and electrophysiological preclinical studies on miceLecouflet, Pierre 13 November 2018 (has links)
La Maladie d’Alzheimer (MA) est la première cause de démence au monde. Un fort coût de prise en charge, associé une faible efficacité des traitements actuels font de la découverte d’une thérapie efficace une priorité. Dans ce contexte les récepteurs sérotoninergiques de type 4 (5-HT4R) représentent une cible prometteuse. En effet, l’utilisation d’agonistes des 5-HT4R chez l’animal entraîne à la fois des effets pro-mnésiants et anti-amnésiants et une action sur la physiopathologie de cette maladie. Par ailleurs, l’aspect multifactoriel de la MA a conduit à faire émerger ces derniers années un consensus quant à la nécessité du développement de stratégie thérapeutique multi-cibles. Dans un premier temps, nous avons démontré l’intérêt de l’association d’un inhibiteur de l’acétylcholinestérase (IAChE) - l’un des rares médicaments disponibles, à un agoniste des 5-HT4R (RS67333) sur les performances de mémoire de travail et de référence chez la souris. Par la suite et afin de mieux comprendre les mécanismes mises en jeu dans les effets anti-amnésiant du RS67333, nous avons étudié les effets de la stimulation des 5-HT4R sur la plasticité synaptique mesurée au moyen d’une approche ex vivo au niveau de la région CA1 de l’hippocampe chez la souris saine NMRI. En effet, la plasticité synaptique, est un élément essentiel des processus d’apprentissage et de mémoire. Une première étude chez la souris saine a montré que la stimulation des 5-HT4R inhibait la potentialisation à long terme (LTP) induite par stimulation thêta-burst (TBS). Nos résultats suggèrent que l’inhibition de la LTP par l’agoniste est médiée par une modification de la neurotransmission GABAergique. La dernière partie de mes travaux a porté sur un modèle transgénique murins mimant certains des aspects de la MA (souris 5xFAD). Ainsi, si la stimulation des 5-HT4R conduisait à des résultats similaires en terme de transmission synaptique de base ou de plasticité à long-terme, elle modifie de façon importante la plasticité à court terme. L’ensemble de ces résultats obtenus ex vivo nécessiteraient d’être associé à des mesures in vivo, pour faire le lien entre les effets sur la plasticité synaptique et les performances de mémoire. Nos travaux montrent l’existence d’une association entre les 5-HT4R et la transmission GABAergique dans la modulation de la plasticité synaptique hippocampique de la région CA1. Plus généralement, ils renforcent l’intérêt de stratégies multi-cibles contenant notamment un agoniste des 5-HT4R. / Alzheimer’s disease (AD) is the first cause of dementia in the world. Due to its high cost of care combined with the lack of efficient treatment, the discovery of an effective therapy is a priority. In that regard, 5-HT4R are a promising target. Indeed, preclinical studies showed promnesic and anti-amnesic effect of 5-HT4R agonist as well as a disease-modifying effect on amyloid processing. Furthermore, given the multifactorial aspect of AD pathophysiology, there is a consensus concerning the necessity for multi-target therapy to treat effectively this disease. First, we confirmed the beneficial effect of a combined treatment with galantamine, an IAChE, and RS67333, a 5-HT4R agonist, on working and reference memory performances in a pharmacological model of scopolamine-induced amnesia. Then, for a better understanding of the mechanisms involved in 5-HT4R stimulation-induced increase in memory performances, we investigated the effects of such stimulation on CA1 area synaptic plasticity. Indeed, synaptic plasticity is a key component of learning and memory processes. Through ex-vivo electrophysiological recordings, we demonstrated that 5-HT4R activation impairs TBS-induced LTP in wild-type healthy mice. Further experiments suggested that such impairment involves a modulation of GABAergic neurotransmission. In addition, a third study on a transgenic model of AD (5xFAD mice) showed similar results. These results, obtained exclusively ex vivo, need to be associated with in vivo experiments to close the gap with behavioral experiments and allow an interpretation of memory performances through synaptic plasticity modifications. Our work shows the existence of an interplay between 5-HT4R and GABAergic transmission in the regulation of synaptic plasticity in hippocampal CA1 area. Furthermore, we strengthen the interest toward multi-target treatment involving 5-HT4R agonists in the field of AD.
|
4 |
Hippocampal structural reactive plasticity in a rat model of temporal lobe epilepsy : chloride homeostasis as a keystoneKourdougli, Nazim 07 December 2015 (has links)
Cette thèse a pour objectif spécifique d’explorer les événements précoces pouvant être à l’origine du bourgeonnement aberrant des fibres moussues (FM) du gyrus denté, une réorganisation majeure dans l’Epilepsie du Lobe Tempora (ELT). Nous avons utilisé le modèle pilocarpine d’ELT chez le rat afin de montrer que la transmission GABAergique jouait un rôle prépondérant dans la formation des FM aberrantes au cours de l’épileptogenèse. Ceci étant due à une altération de l’homéostasie chlore, suite à une augmentation de l’expression du co-transporteur NKCC1 et une diminution du co-transporteur KCC2. Nos résultats ont démontré que le récepteur aux neurotrophines p75NTR était un médiateur de l’action trophique de la réponse GABAergique dépolarisante sur le bourgeonnement aberrant des FM. Le blocage de l’action dépolarisante de la transmission GABAergique via l’utilisation de la bumétanide, a permis de réduire le bourgeonnement aberrant des MF en réduisant l’expression de p75NTR. Enfin, l’application transitoire de la bumétanide au cours de l’épileptogenèse a abouti à la réduction du nombre de crises récurrentes et spontanées au cours de la phase chronique d’ELT chez le rat. Ce travail a permis de dévoiler les mécanismes moléculaires sous-jacents de la réorganisation du réseau neuronal glutamatergique consécutif à une crise inaugurale dans un modèle d’ELT. Dans l'ensemble, cette thèse apporte un éclairage nouveau sur l’importance de l’interaction de la signalisation GABAergique avec les neurotrophines afin d’orchestrer la plasticité réactive au sein de l’hippocampe dans TLE. / The present dissertation undertakes to investigate the early triggering events of the mossy fiber sprouting (MFS) in the dentate gyrus, a hallmark of hippocampal reactive plasticity in Temporal Lobe Epilepsy (TLE). We used the rat pilocarpine model of TLE to show that altered GABAA receptor-mediated transmission play a key role in the formation of early ectopic MFS during epileptogenesis. This is likely due to a compromised chloride homeostasis, as a result of increased expression of chloride loader NKCC1 and downregulation of the neuronal chloride extruder KCC2. We next addressed the mechanistic action of depolarizing GABAAR responses with regard to neurotrophin signaling. Our findings uncovered that the pan neurotrophin receptor p75 (p75NTR) mediated the sculpting action of depolarizing GABAAR responses on the ectopic MFS. Blockade of depolarizing GABAAR responses using the loop diuretic bumetanide reduced abnormal p75NTR subsequently decreased the ectopic MFS. Finally, transitory application of bumetanide during epileptogenesis resulted in reduction of spontaneous and recurrent seizures during the chronic phase of TLE. The rationale of this work is that unveiling the molecular mechanisms underlying the hippocampal post-seizure glutamatergic network rewiring will help to drive future novel therapeutic avenues involving chloride homeostasis and neurotrophin interplay. Overall, this dissertation shed a new light on how GABAergic transmission and neurotrophin signaling crosstalk can orchestrate reactive hippocampal plasticity in TLE.
|
5 |
Mécanismes neuronaux et électrophysiologiques des arythmies cardiaques ventriculaires qui naissent de la stimulation du système nerveux centralCrambes, Anne January 1998 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
6 |
Mécanismes moléculaires impliqués dans la régulation de l’acide polysialique (PSA) dans le néocortex visuel des souris durant la maturation des synapses GABAergiquesBélanger, Marie-Claude 08 1900 (has links)
Le fonctionnement du cortex cérébral nécessite l’action coordonnée de deux des sous-types majeurs de neurones, soient les neurones à projections glutamatergiques et les interneurones GABAergiques. Les interneurones GABAergiques ne constituent que 20 à 30% des cellules corticales par rapport au grand nombre de neurones glutamatergiques. Leur rôle est toutefois prépondérant puisqu’ils modulent fortement la dynamique et la plasticité des réseaux néocorticaux. Il n’est donc pas surprenant que les altérations de développement des circuits GABAergiques soient associées à plusieurs maladies du cerveau, incluant l’épilepsie, le syndrome de Rett et la schizophrénie. La compréhension des mécanismes moléculaires régissant le développement des circuits GABAergiques est une étape essentielle menant vers une meilleure compréhension de la façon dont les anormalités se produisent. Conséquemment, nous nous intéressons au rôle de l’acide polysialique (PSA) dans le développement des synapses GABAergiques. PSA est un homopolymère de chaînons polysialylés en α-2,8, et est exclusivement lié à la molécule d’adhésion aux cellules neuronales (NCAM) dans les cerveaux de mammifères. PSA est impliqué dans plusieurs processus développementaux, y compris la formation et la plasticité des synapses glutamatergiques, mais son rôle dans les réseaux GABAergiques reste à préciser. Les données générées dans le laboratoire du Dr. Di Cristo démontrent que PSA est fortement exprimé post- natalement dans le néocortex des rongeurs, que son abondance diminue au cours du développement, et, faits importants, que son expression dépend de l’activité visuelle
i
et est inversement corrélée à la maturation des synapses GABAergiques. La présente propose de caractériser les mécanismes moléculaires régulant l’expression de PSA dans le néocortex visuel de la souris. Les enzymes polysialyltransférases ST8SiaII (STX) et ST8SiaIV (PST) sont responsables de la formation de la chaîne de PSA sur NCAM. En contrôlant ainsi la quantité de PSA sur NCAM, ils influenceraient le développement des synapses GABAergiques. Mon projet consiste à déterminer comment l’expression des polysialyltransférases est régulée dans le néocortex visuel des souris durant la période post-natale; ces données sont à la fois inconnues, et cruciales. Nous utilisons un système de cultures organotypiques dont la maturation des synapses GABAergiques est comparable au modèle in vivo. L’analyse de l’expression génique par qPCR a démontré que l’expression des polysialyltransférases diminue au cours du développement; une baisse majeure corrélant avec l’ouverture des yeux chez la souris. Nous avons de plus illustré pour la première fois que l’expression de STX, et non celle de PST, est activité-dépendante, et que ce processus requiert l’activation du récepteur NMDA, une augmentation du niveau de calcium intracellulaire et la protéine kinase C (PKC). Ces données démontrent que STX est l’enzyme régulant préférentiellement le niveau de PSA sur NCAM au cours de la période post-natale dans le cortex visuel des souris. Des données préliminaires d’un second volet de notre investigation suggèrent que l’acétylation des histones et la méthylation de l’ADN pourraient également contribuer à la régulation de la transcription de cette enzyme durant le développement. Plus d’investigations seront toutefois nécessaires afin de confirmer cette hypothèse. En somme, la connaissance des mécanismes par lesquels l’expression des
ii
polysialyltransférases est modulée est essentielle à la compréhension du processus de maturation des synapses GABAergiques. Ceci permettrait de moduler pharmacologiquement l’expression de ces enzymes; la sur-expression de STX et/ou PST pourrait produire une plus grande quantité de PSA, déstabiliser les synapses GABAergiques, et conséquemment, ré-induire la plasticité cérébrale. / The functioning of the cerebral cortex requires coordinated action of two major neuronal subtypes - the glutamatergic projection neurons and the GABAergic interneurons. GABAergic interneurons represent 20 to 30% of all cortical cells. Even though they are a minor cell population in the cerebral cortex compared to glutamatergic neurons, they are key modulators of network dynamics and plasticity of neocortical circuits. It is therefore not surprising that aberrant development of GABAergic circuits is implicated in many neurodevelopmental disorders including epilepsy, Rett syndrome and schizophrenia. Understanding the molecular mechanisms governing the development of GABAergic inhibitory synapses in neocortex is important towards a better comprehension of how abnormalities in this developmental process can occur. Therefore, we focus specifically on the role of polysialic acid (PSA) in the development of GABAergic synapses. PSA is a α-2,8 polysialylated homopolymer, which is exclusively linked to the Neural Cell Adhesion Molecule (NCAM) in the mammalian brain. It is involved in several developmental processes including formation and plasticity of glutamatergic synapses; however its role in GABAergic circuit formation has not been explored so far. Previously in Dr Di Cristo’s lab, we showed that PSA is strongly expressed post-natally and its expression steadily declines during development in mice neocortex. We also showed that the developmental and activity-dependant regulation of PSA expression is inversely correlated with the maturation of perisomatic GABAergic innervation. Our aim is to characterize the molecular mechanisms regulating PSA expression in mouse
iv
visual cortex during post-natal development. Two polysialyltransferases, ST8SiaII (STX) and ST8SiaIV (PST), are responsible for PSA attachment to NCAM. By controlling the amount of PSA on NCAM, they can influence GABAergic synapses development. The mechanisms regulating STX and PST expression is crucial but remain still unknown. My research project focused on the mechanisms regulating STX and PST transcription in the mouse postnatal cortex. We used an organotypic culture system, which recapitulates many aspects of GABAergic synapse maturation as observed in vivo. Polysialyltransferases transcript levels were measured by qPCR and showed that STX and PST mRNA levels steadily decline during post-natal development in the mouse cortex; the sharpest reduction in the expression of both enzymes correlate with eye opening. We further demonstrate for the first time that STX mRNA levels is activity-dependant, requires the activation of NMDA receptors, an increase in intracellular Calcium levels and is PKC-dependent. Altogether, we show that the regulation of the expression of STX is the main mechanism responsible for PSA expression levels in the cortex around eyes opening. We next investigated whether epigenetic mechanisms regulate STX transcription and preliminary data suggest that histone acetylation and DNA methylation may contribute to STX expression during development. However, further experiments are required to confirm this hypothesis. In summary, understanding the mechanisms modulating STX and PST expression in the neocortex is essential for the comprehension of their precise role in GABAergic synapse maturation. This knowledge could allow us to modulate pharmacologically the expression of these enzymes; in turn overexpression
of STX and PST may re-induce PSA expression, thereby destabilizing GABAergic synapses, and ultimately facilitating cortical plasticity in the adult.
|
7 |
Mécanismes moléculaires impliqués dans la régulation de l’acide polysialique (PSA) dans le néocortex visuel des souris durant la maturation des synapses GABAergiquesBélanger, Marie-Claude 08 1900 (has links)
Le fonctionnement du cortex cérébral nécessite l’action coordonnée de deux des sous-types majeurs de neurones, soient les neurones à projections glutamatergiques et les interneurones GABAergiques. Les interneurones GABAergiques ne constituent que 20 à 30% des cellules corticales par rapport au grand nombre de neurones glutamatergiques. Leur rôle est toutefois prépondérant puisqu’ils modulent fortement la dynamique et la plasticité des réseaux néocorticaux. Il n’est donc pas surprenant que les altérations de développement des circuits GABAergiques soient associées à plusieurs maladies du cerveau, incluant l’épilepsie, le syndrome de Rett et la schizophrénie. La compréhension des mécanismes moléculaires régissant le développement des circuits GABAergiques est une étape essentielle menant vers une meilleure compréhension de la façon dont les anormalités se produisent. Conséquemment, nous nous intéressons au rôle de l’acide polysialique (PSA) dans le développement des synapses GABAergiques. PSA est un homopolymère de chaînons polysialylés en α-2,8, et est exclusivement lié à la molécule d’adhésion aux cellules neuronales (NCAM) dans les cerveaux de mammifères. PSA est impliqué dans plusieurs processus développementaux, y compris la formation et la plasticité des synapses glutamatergiques, mais son rôle dans les réseaux GABAergiques reste à préciser. Les données générées dans le laboratoire du Dr. Di Cristo démontrent que PSA est fortement exprimé post- natalement dans le néocortex des rongeurs, que son abondance diminue au cours du développement, et, faits importants, que son expression dépend de l’activité visuelle
i
et est inversement corrélée à la maturation des synapses GABAergiques. La présente propose de caractériser les mécanismes moléculaires régulant l’expression de PSA dans le néocortex visuel de la souris. Les enzymes polysialyltransférases ST8SiaII (STX) et ST8SiaIV (PST) sont responsables de la formation de la chaîne de PSA sur NCAM. En contrôlant ainsi la quantité de PSA sur NCAM, ils influenceraient le développement des synapses GABAergiques. Mon projet consiste à déterminer comment l’expression des polysialyltransférases est régulée dans le néocortex visuel des souris durant la période post-natale; ces données sont à la fois inconnues, et cruciales. Nous utilisons un système de cultures organotypiques dont la maturation des synapses GABAergiques est comparable au modèle in vivo. L’analyse de l’expression génique par qPCR a démontré que l’expression des polysialyltransférases diminue au cours du développement; une baisse majeure corrélant avec l’ouverture des yeux chez la souris. Nous avons de plus illustré pour la première fois que l’expression de STX, et non celle de PST, est activité-dépendante, et que ce processus requiert l’activation du récepteur NMDA, une augmentation du niveau de calcium intracellulaire et la protéine kinase C (PKC). Ces données démontrent que STX est l’enzyme régulant préférentiellement le niveau de PSA sur NCAM au cours de la période post-natale dans le cortex visuel des souris. Des données préliminaires d’un second volet de notre investigation suggèrent que l’acétylation des histones et la méthylation de l’ADN pourraient également contribuer à la régulation de la transcription de cette enzyme durant le développement. Plus d’investigations seront toutefois nécessaires afin de confirmer cette hypothèse. En somme, la connaissance des mécanismes par lesquels l’expression des
ii
polysialyltransférases est modulée est essentielle à la compréhension du processus de maturation des synapses GABAergiques. Ceci permettrait de moduler pharmacologiquement l’expression de ces enzymes; la sur-expression de STX et/ou PST pourrait produire une plus grande quantité de PSA, déstabiliser les synapses GABAergiques, et conséquemment, ré-induire la plasticité cérébrale. / The functioning of the cerebral cortex requires coordinated action of two major neuronal subtypes - the glutamatergic projection neurons and the GABAergic interneurons. GABAergic interneurons represent 20 to 30% of all cortical cells. Even though they are a minor cell population in the cerebral cortex compared to glutamatergic neurons, they are key modulators of network dynamics and plasticity of neocortical circuits. It is therefore not surprising that aberrant development of GABAergic circuits is implicated in many neurodevelopmental disorders including epilepsy, Rett syndrome and schizophrenia. Understanding the molecular mechanisms governing the development of GABAergic inhibitory synapses in neocortex is important towards a better comprehension of how abnormalities in this developmental process can occur. Therefore, we focus specifically on the role of polysialic acid (PSA) in the development of GABAergic synapses. PSA is a α-2,8 polysialylated homopolymer, which is exclusively linked to the Neural Cell Adhesion Molecule (NCAM) in the mammalian brain. It is involved in several developmental processes including formation and plasticity of glutamatergic synapses; however its role in GABAergic circuit formation has not been explored so far. Previously in Dr Di Cristo’s lab, we showed that PSA is strongly expressed post-natally and its expression steadily declines during development in mice neocortex. We also showed that the developmental and activity-dependant regulation of PSA expression is inversely correlated with the maturation of perisomatic GABAergic innervation. Our aim is to characterize the molecular mechanisms regulating PSA expression in mouse
iv
visual cortex during post-natal development. Two polysialyltransferases, ST8SiaII (STX) and ST8SiaIV (PST), are responsible for PSA attachment to NCAM. By controlling the amount of PSA on NCAM, they can influence GABAergic synapses development. The mechanisms regulating STX and PST expression is crucial but remain still unknown. My research project focused on the mechanisms regulating STX and PST transcription in the mouse postnatal cortex. We used an organotypic culture system, which recapitulates many aspects of GABAergic synapse maturation as observed in vivo. Polysialyltransferases transcript levels were measured by qPCR and showed that STX and PST mRNA levels steadily decline during post-natal development in the mouse cortex; the sharpest reduction in the expression of both enzymes correlate with eye opening. We further demonstrate for the first time that STX mRNA levels is activity-dependant, requires the activation of NMDA receptors, an increase in intracellular Calcium levels and is PKC-dependent. Altogether, we show that the regulation of the expression of STX is the main mechanism responsible for PSA expression levels in the cortex around eyes opening. We next investigated whether epigenetic mechanisms regulate STX transcription and preliminary data suggest that histone acetylation and DNA methylation may contribute to STX expression during development. However, further experiments are required to confirm this hypothesis. In summary, understanding the mechanisms modulating STX and PST expression in the neocortex is essential for the comprehension of their precise role in GABAergic synapse maturation. This knowledge could allow us to modulate pharmacologically the expression of these enzymes; in turn overexpression
of STX and PST may re-induce PSA expression, thereby destabilizing GABAergic synapses, and ultimately facilitating cortical plasticity in the adult.
|
8 |
Rôle de l’homéostasie des ions chlorures dans la survenue des troubles dépressifs dans un modèle murin de traumatisme cérébral / Role of chloride homeostasis in post-traumatic depressive like behaviorGoubert, Emmanuelle 05 December 2017 (has links)
Le traumatisme cérébral (TC) touche des millions de personnes chaque année dans le monde. Les premières conséquences peuvent être une perte de conscience, des hémorragies et l’apparition d’un œdème cérébral. Cependant les personnes qui subissent un TC peuvent présenter des séquelles importantes à plus long terme. Ainsi le traitement préventif des pathologies post-traumatiques est devenu un réel problème de santé publique. La dépression représente la pathologie post-traumatique dont l’occurrence est la plus fréquente. Les origines connues de son apparition s’orientent vers une altération de la neurogenèse adulte hippocampique ainsi que des changements dans la neurotransmission GABAergique, qui est dépendante de l’homéostasie des ions chlorures. Mon travail de thèse suggère que la phase critique, responsable de l’apparition des pathologies post-traumatiques, survient au cours de la première semaine suivant le TC. Pendant cette période, mes résultats montrent que l’hyperexcitabilité des réseaux neuronaux hippocampiques est due à une perturbation des transporteurs des ions chlorure entraînant notamment, une diminution de l’inhibition neuronale. J’ai aussi pu mettre en évidence une altération de la neurogenèse adulte hippocampique liée à la perte d’interneurones dans le gyrus denté. Consécutivement à ces changements, vont s’installer des troubles dépressifs majeurs. Mes travaux indiquent également que la restauration précoce, de l’homéostasie des ions chlorure par un agent pharmacologique, prévient la mort des interneurones ainsi que les changements dans la neurogenèse et permet sur le long terme de réduire très fortement les troubles dépressifs majeurs. / Traumatic brain injury (TBI) affects annually millions of people over the world. The first major consequences include loss of consciousness, haemorrhage and the appearance of cerebral edema. However, people who experience TBI may have significant long-term sequelae and in the majority of cases develop major depressive disorders. In addition, debilitating effects of TBI substantially impair health-related quality of life and are associated with high health care costs. Hence, preventive treatment against posttraumatic pathologies has become a real public health concern. Increasing evidence points to an association between depressive disorders and changes in GABAergic neurotransmission as well as alteration of adult hippocampal neurogenesis.My thesis suggests that the critical phase of posttraumatic pathology occurs over the first week following the trauma. During this period, my results show that hippocampal network hyperexcitability is induced by a disruption of the chloride ion transporters, leading notably to a decrease in neuronal inhibition. Then my work highlighted an alteration of hippocampal neurogenesis related to the loss of interneurons in the dentate gyrus. After some latency, these changes will trigger major depressive disorders. My work also indicates that the early restoration, during this first post-traumatic week, of chloride ion homeostasis by a pharmacological agent, prevents cell death of interneurons as well as changes in neurogenesis and allows significant long-term reduction of major depressive disorders. This therefore suggests the possibility of developing new therapeutic strategies to prevent the emergence of posttraumatic pathologies.
|
9 |
Modulation endogène des récepteurs métabotropiques du glutamate : bases moléculaires et implications fonctionnelles de la sensibilité au chlore extracellulaire / Endogenous modulation of metabotropic glutamate receptors : molecular basis and functional implications of extracellular chloride sensitivityTora, Amélie 20 October 2015 (has links)
Les récepteurs métabotropiques du glutamate (mGluRs) sont des récepteurs couplés aux protéines G (RCPGs) modulant la transmission synaptique au sein du système nerveux central. D'un point de vue structural, ils ont la particularité de posséder un large domaine extracellulaire, le Venus Flytrap (VFT), où se lie leur ligand endogène, le glutamate. Leur domaine transmembranaire à 7 hélices, commun à tous les RCPGs, est connu pour être la cible d'une nouvelle classe de molécules à visée thérapeutique, les modulateurs allostériques. Au contraire, le VFT est le siège du développement de ligands compétitifs du glutamate et peu de choses sont connues quant à l'existence de modulateurs allostériques du VFT. Des études récentes ont mis en évidence une sensibilité des mGluRs aux ions extracellulaires et en particulier au chlore (Cl-), sans que son site de liaison ne soit identifié. Dans ce contexte, ce travail de thèse explore la possibilité d'une modulation allostérique endogène des mGluRs par les ions Cl-, en identifiant leur(s) site(s) de liaison(s) et leur effet sur la dynamique conformationnelle et la fonction des récepteurs. En combinant une approche pharmacologique, biophysique basée sur la technique de FRET, et la modélisation, nous avons tout d'abord confirmé que le Cl- potentialise l'action du glutamate sur tous les mGluRs et qu'il favorise la conformation active des récepteurs en se liant au niveau du VFT. Les mGluRs présentent également une sensibilité différente au Cl-, mGlu4 étant le plus sensible et mGlu2 le moins. Ceci s'explique notamment par le nombre de sites fonctionnels, tous les mGluRs dont mGlu4 possédant 2 sites par monomère à l'exception de mGlu2 qui n'en possède qu'un, en raison d'une mutation « clé » d'une sérine en aspartate dans le lobe 1 du VFT. D'autre part, le récepteur mGlu3 est apparu comme un cas particulier ayant une sensibilité accrue au Cl-, son domaine VFT cumulant la présence et l'orientation adéquate d'acides aminés formant un « verrou » Cl-, qui favorise de manière drastique la conformation active et une activité basale élevée de ce récepteur. Enfin, la modélisation de la variation de la concentration extracellulaire en Cl- lors d'une activité synaptique GABAergique est compatible avec une modulation des mGluRs les plus sensibles. En conclusion, le Cl- est un modulateur allostérique endogène des mGluRs et l'exploitation de ses sites de liaison au sein du VFT pourrait permettre le développement de nouveaux agents thérapeutiques. / Metabotropic glutamate receptors (mGluRs) are G coupled-protein receptors (GPCRs) playing key roles in synaptic transmission in the central nervous system. They display a large extracellular domain, the Venus Flytrap (VFT) where the endogenous ligand, glutamate, binds. Their 7 transmembrane helices spanning domain, common to all GPCRs, is known to be the target of new therapeutic compounds, called allosteric modulators. In contrast, VFT domain is used to develop glutamate competitive ligands and there are only few data about allosteric modulators targeting the VFT. Recent studies have shown mGluRs are sensitive to extracellular ions, particularly to chloride (Cl-), although its binding site has not been elucidated. This thesis work explores the possibility of an endogenous allosteric modulation of mGluRs by Cl-, aiming to delineate its binding site(s) and its effect on receptor conformational dynamics and function. Using pharmacological, FRET based biophysical approaches and modelling, we have first confirmed that Cl- potentiates glutamate action in all mGluRs and that this ion favors agonist induced active conformation by binding to the VFT. mGluRs are also differently sensitive to Cl-, mGlu4 being the most and mGlu2 the least. This difference is notably explained by the number of Cl- functional sites within the VFT, all mGluRs including mGlu4 displaying 2 sites per monomer whereas mGlu2 has only 1 site due to a serine-aspartate “key” mutation in VFT lobe 1. Besides, mGlu3 receptor appears to be a “special case”, as this receptor is highly sensitive to Cl- because its VFT domain is carrying amino acids creating a “Cl- lock”, which dramatically favors active conformation and a high level of basal activity. Finally, modelling of extracellular Cl- concentration variations in a GABAergic synapse is compatible with a modulation of the most sensitive mGluRs. In conclusion, Cl- is an endogenous allosteric modulator of mGluRs and exploiting its binding sites may yield to the development of innovative therapeutic tools.
|
10 |
Identification des déterminants viraux et mécanismes moléculaires impliqués dans l’interférence du virus de la maladie de Borna avec la neurogenèse humaine / Identification of viral determinants and molecular mechanisms involved in Borna disease virus interference with human neurogenesisScordel, Chloé 15 December 2014 (has links)
Le virus de la maladie de Borna (BDV) est un virus persistant dans le système nerveux central responsable de troubles du comportement chez l’animal et possiblement chez l’homme. En utilisant des cellules progénitrices neurales humaines, des travaux antérieurs à mon arrivée au laboratoire ont montré que BDV altère la neurogenèse humaine. Les objectifs de ma thèse étaient d’identifier les déterminants viraux responsables de cette altération et de caractériser les mécanismes moléculaires impliqués. Nous avons montré que la phosphoprotéine (P) et la nucléoprotéine (N), mais pas la protéine X, induisent une inhibition spécifique de la neurogenèse humaine, la genèse des astrocytes n’étant pas altérée. Ensuite, focalisant notre étude sur P, nous avons montré qu’elle affectait particulièrement la genèse des neurones GABAergiques. La caractérisation moléculaire a ensuite révélé une diminution de l’expression de gènes impliqués dans la spécification (ApoE et Noggin) et dans la maturation (SCG10/Stathmin2 et TH) neuronale. En conclusion, nos résultats démontrent, pour la première fois, qu’une protéine virale perturbe la neurogenèse GABAergique humaine, un processus connu pour être dérégulé dans certaines maladies psychiatriques. Ils améliorent ainsi notre compréhension de la pathogenèse de ce virus persistant et de son rôle possible dans les maladies psychiatriques chez l’homme. / Borna disease virus (BDV) is a persistent neurotropic virus causing neurobehavioral disorders in animals and possibly humans. Using human neural progenitor cells, it had been shown, before my arrival in the laboratory, that BDV induces an alteration in human neurogenesis. Here, we aimed at identifying the viral determinants involved in BDV-induced impairment of neurogenesis and at characterizing the underlying molecular mechanisms. We demonstrated that the phosphoprotein (P) and the nucleoprotein (N), but not the X protein, reduce neurogenesis. Focusing on the role of P, we evidenced an impairment of GABAergic neurogenesis. Then, seeking for the molecular mechanisms responsible for P-induced inhibition of neurogenesis, we showed that it induces a decrease in the expression of cellular factors involved in either neuronal specification (ApoE, Noggin) or maturation (SCG10/Stathmin, TH). Thus, in this study, we demonstrated for the first time that a viral protein is capable of inhibiting GABAergic neurogenesis, a process that is dysregulated in some psychiatric diseases. Our results improve our understanding of the pathogenesis of this persistent neurotropic virus and of its possible role in psychiatric disorders.
|
Page generated in 0.0337 seconds