261 |
Numerical modelling of pressure rise combustion for reducing emissions of future civil aircraftMaterano Blanco, Gilberto Ignacio 04 1900 (has links)
This work assesses the feasibility of designing and implementing the wave rotor
(WR), the pulse detonation engine (PDE) and the internal combustion wave
rotor (ICWR) as part of novel Brayton cycles able to reduce emissions of future
aircraft. The design and evaluation processes are performed using the
simplified analytical solution of the devices as well as 1D-CFD models. A code
based on the finite volume method is built to predict the position and
dimensions of the slots for the WR and ICWR. The mass and momentum
equations are coupled through a modified SIMPLE algorithm to model
compressible flow. The code includes a novel tracking technique to ensure the
global mass balance. A code based on the method of characteristics is built to
predict the profiles of temperature, pressure and velocity at the discharge of the
PDE and the effect of the PDEs array when it operates as combustion chamber
of gas turbines. The detonation is modelled by using the NASA-CEA code as a
subroutine whilst the method of characteristics incorporates a model to capture
the throttling and non-throttling conditions obtained at the PDE's open end
during the transient process. A medium-sized engine for business jets is
selected to perform the evaluation that includes parameters such as specific
thrust, specific fuel consumption and efficiency of energy conversion. The ICWR
offers the best performance followed by the PDE; both options operate with a
low specific fuel consumption and higher specific thrust. The detonation in an
ICWR does not require an external source of energy, but the PDE array
designed is simple. The WR produced an increase in the turbine performance,
but not as high as the other two devices. These results enable the statement
that a pressure rise combustion process behaves better than pressure
exchangers for this size of gas turbine. Further attention must be given to the
NOx emission, since the detonation process is able to cause temperatures
above 2000 K while dilution air could be an important source of oxygen.
|
262 |
Superposition in the leading edge region of a film cooled gas turbine vaneAnderson, Joshua Brian 04 April 2014 (has links)
The leading edge of a turbine vane is subject to some of the highest temperature loading within an engine, and an accurate understanding of leading edge film coolant behavior is essential to efficient engine design. Although there have been many investigations of the adiabatic effectiveness for showerhead film cooling within the leading edge region, there have been no previous studies in which individual rows of the showerhead were tested with the explicit intent of validating superposition models. For the current investigation, a series of adiabatic effectiveness experiments were performed with a five-row showerhead, wherein each row of holes was operated in isolation. This allowed evaluation of superposition on both the suction side of the vane, which was moderately convex, and the pressure side of the vane, which was mildly concave. Superposition was found to accurately predict performance on the suction side of the vane at lower momentum flux ratios, but not for higher momentum flux ratios. On the pressure side of the vane, the superposition predictions were consistently lower than measured values, with significant under-prediction of adiabatic effectiveness occurring at the higher mass flow rates. Possible reasons for the under-prediction of effectiveness by the superposition model are presented. / text
|
263 |
Power plant system reliability analysis : applications to insurance risk selection and pricingTrayhorn, Benjamin January 2012 (has links)
Within the Speciality Engineering Insurance Field the use of engineering opinion is the main component in risk analysis for underwriting decision making. The use of risk analysis tools to quantify the risk associated with perils such as mechanical breakdown is limited. A reliability model for the risk analysis of mechanical breakdown risk for the power generation sector, PowerRAT, has been developed and its performance evaluated against historic claim data. It has proven to closely forecast actual losses over a portfolio of power plants, and differentiate between power plant type; conventional steam, simple and combined cycle gas turbine plants. Differentiation based on the factors of equipment type and policy terms has been demonstrated. A review of existing survey report methodology has shown highly variable quality of reports with significant missing information on which to make underwriting decisions. A best practice survey report contents has been proposed in order to provide a consistent level of information for comparison with other risks. The development cycle of PowerRAT has led to a proposed framework for the development of future risk assessment tools for insurance. This is built on four main areas: risk identification, data analysis, calculation methodology and insurance factors.
|
264 |
CFD predictions of heat transfer coefficient augmentation on a simulated film cooled turbine blade leading edgeBeirnaert-Chartrel, Gwennaël 11 July 2011 (has links)
Computations were run to study heat transfer coefficient augmentation with film cooling for a simulated gas turbine blade leading edge. The realizable k-[epsilon] turbulence model (RKE) and Shear Stress Transport k-[omega] turbulence model (SST) were used for the computational simulations. RKE computations completed at a unity density ratio were confirmed to be consistent with experimental measurements conducted by Yuki et al.(1998) and Johnston et al. (1999) whereas SST computations exhibited significant discrepancies. Moreover the effect of the density ratio on heat transfer coefficient augmentation was studied because experimental measurements of heat transfer coefficient augmentation with film cooling are generally constrained to unity density ratio tests. It was shown that heat transfer coefficient augmentation can be simulated using unity density ratio jets, but only when scaled with the momentum flux ratio of the coolant jets. / text
|
265 |
An Experimental and Numerical Investigation of Evaporative Spray Cooling for a 45 degree Bend near a Gas Turbine ExhaustARMITAGE, GRANT 03 January 2014 (has links)
The research performed in this work investigated evaporative spray cooling systems using water near a 45 degree bends in gas turbine exhaust piping systems. Both experimental data and numerical data were generated with the goal of evaluating the ability of Fluent 6.3.26 to predict the performance of these systems for the purpose of design using only modest computational resources. Three cases were investigated in this research: single phase exhaust flow with no water injection, injecting water before the bend and injecting water after the bend. Various probes were used to measure dry bulb temperature, total pressure and water mass flux of the two phase flow at the exit of the pipe. Seven hole probes and pitot static probes were used to measure single phase flow properties.
Numerical simulations were performed using mass flow boundary conditions which were generated from experimental results. A turbulence model was selected for the simulations based on comparisons of single phase simulations with experimental data and convergence ability. Using Fluent’s discrete phase model, different wall boundary conditions for the discrete phase were used in order to find the model which would best match the evaporation rates of the experimental data. Mass flux values through the exit plane of the pipe were found to be the most reliable of all the two phase data collected.
Results from numerical simulations revealed the shortcomings of the available discrete phase wall boundary conditions to accurately predict the interaction of the liquid phase with the wall. Experimental results for both cases showed extensive areas of the wall which had liquid film layers running down the length of the pipe. Simulations resulted in particles either failing to impact the wall and create a liquid film, or creating a liquid film which was much smaller than the film present in experimental results. This led to 8% and 15% discrepancy in evaporation
amounts between numerical and experimental results for water injection upstream and downstream of the bend respectively. Under-prediction of areas wetted with a wall film in the simulations also led to gross over predictions of wall temperature in numerical results. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2014-01-02 11:02:00.955
|
266 |
Heat Transfer in Rectangular Channels (AR=2:1) of the Gas Turbine Blade at High Rotation NumbersLei, Jiang 1980- 16 December 2013 (has links)
Gas turbine blade/vane cooling is obtained by circulating the high pressure air from compressor to the internal cooling passage of the blade/vane. Heat transfer and cooling effect in the rotating blade is highly affected by rotation. The typical rotation number for the aircraft engine is in the range of 0~0.25 and for the land based power generation turbine in the range of 0~05. Currently, the heat transfer data at high rotation numbers are limited. Besides, the investigation of heat transfer phenomena in the turn region, especially near hub portion is rare. This dissertation is to study the heat transfer in rectangular channels with turns in the tip or the hub portion respectively at high rotation numbers close to the engine condition.
The dissertation experimentally investigates the heat transfer phenomena in a two-pass rectangular channel (AR=W/H=2:1) with a 180 degree sharp turn in the tip portion. The flow in the first passage is radial outward and after the turn in the second passage, the flow direction is radial inward. The hydraulic diameter (Dh) of the channel is 16.9 mm. Parallel square ribs with an attack angle (alpha) of 45 degrees are used on leading and trailing surfaces to enhance the heat transfer. The rib height-to-hydraulic diameter ratio (e/Dh) is 0.094. For the baseline smooth case and the case with rib pitch-to-height ratio (P/e) 10, channel orientation angles (beta) of 90 degrees and 135 degrees were tried to model the cooling passage in the mid and rear portion of the blade respectively. Two other P/e ratios of 5 and 7.5 were studied at beta=135 degrees to investigate their effect on heat transfer. The data are presented under high rotation numbers and buoyancy parameters by varying the Reynolds number (Re=10,000~40,000) and rotation speed (rpm=0~400). Corresponding rotation number and buoyancy parameter are ranged as 0~0.45 and 0~0.8 respectively.
The dissertation also studies the heat transfer in a two-pass channel (AR=2:1) connected by a 180 degree U bend in the hub portion. The flow in the first passage is radial inward and after the U bend, the flow in the second passage is radial outward. The cross-section dimension of this channel is the same as the previous one. To increase heat transfer, staggered square ribs (e/Dh=0.094) are pasted on leading and trailing walls with an attack angle (alpha) of 45 degrees and pitch-to-height ratio (P/e) of 8. A turning vane in the shape of half circle (R=18.5 mm, t=1.6 mm) is used in the turn region to guide the flow for both smooth and ribbed cases. Channel orientation angles (beta) of 90 degrees and 135 degrees were taken for both smooth and ribbed cases. The heat transfer data were taken at high rotation numbers close to previous test section.
|
267 |
Design and Development of an Experimental Apparatus to Study Jet Fuel Coking in Small Gas Turbine Fuel NozzlesLiang, Jason Jian 04 December 2013 (has links)
An experimental apparatus was designed and built to study the thermal autoxidative carbon deposition, or coking, in the fuel injection nozzles of small gas turbine engines. The apparatus is a simplified representation of an aircraft fuel system, consisting of a preheating section and a test section, which is a passage that simulates the geometry, temperatures, pressures and flow rates seen by the fuel injection nozzles. Preliminary experiments were performed to verify the functionality of the apparatus. Pressure drop across the test section was measured throughout the experiments to monitor deposit buildup, and an effective reduction in test section diameter due to deposit blockage was calculated. The preliminary experiments showed that the pressure drop increased more significantly for higher test section temperatures, and that pressure drop measurement is an effective method of monitoring and quantifying deposit buildup.
|
268 |
Design and Development of an Experimental Apparatus to Study Jet Fuel Coking in Small Gas Turbine Fuel NozzlesLiang, Jason Jian 04 December 2013 (has links)
An experimental apparatus was designed and built to study the thermal autoxidative carbon deposition, or coking, in the fuel injection nozzles of small gas turbine engines. The apparatus is a simplified representation of an aircraft fuel system, consisting of a preheating section and a test section, which is a passage that simulates the geometry, temperatures, pressures and flow rates seen by the fuel injection nozzles. Preliminary experiments were performed to verify the functionality of the apparatus. Pressure drop across the test section was measured throughout the experiments to monitor deposit buildup, and an effective reduction in test section diameter due to deposit blockage was calculated. The preliminary experiments showed that the pressure drop increased more significantly for higher test section temperatures, and that pressure drop measurement is an effective method of monitoring and quantifying deposit buildup.
|
269 |
CFD Modeling of Heat Recovery Steam Generator and its Components Using FluentVytla, Veera Venkata Sunil Kumar 01 January 2005 (has links)
Combined Cycle power plants have recently become a serious alternative for standard coal- and oil-fired power plants because of their high thermal efficiency, environmentally friendly operation, and short time to construct. The combined cycle plant is an integration of the gas turbine and the steam turbine, combining many of the advantages of both thermodynamic cycles using a single fuel. By recovering the heat energy in the gas turbine exhaust and using it to generate steam, the combined cycle leverages the conversion of the fuel energy at a very high efficiency. The heat recovery steam generator forms the backbone of combined cycle plants, providing the link between the gas turbine and the steam turbine. The design of HRSG has historically largely been completed using thermodynamic principles related to the steam path, without much regard to the gas-side of the system. An effort has been made using resources at both UK and Vogt Power International to use computational fluid dynamics (CFD) analysis of the gas-side flow path of the HRSG as an integral tool in the design process. This thesis focuses on how CFD analysis can be used to assess the impact of the gas-side flow on the HRSG performance and identify design modifications to improve the performance. An effort is also made to explore the software capabilities to make the simulation an efficient and accurate.
|
270 |
PIV Measurements of Channel Flow with Multiple Rib ArrangementsRoclawski, Harald 01 January 2001 (has links)
A model of a gas turbine blade cooling channel equipped with turbulators and a backward facing step geometry was examined. Up to four turbulators oriented cross-stream and inclined 45° to the flow direction were mounted in the channel. The blockage ratio b/H of the turbulators and the height h/H of the backward facing step was 0:125 and 0:14 respectively. The number of turbulators as well as their size was varied. In a preliminary investigation, hot-wire and pressure measurements were taken for three different Reynolds numbers (5,000, 12,000, 18,000)in the center plane of the test section. Subsequently, particle image velocimetry (PIV) measurements were made on the same geometries. Results of PIV measurements for a Reynolds number range of Reb=600 to 5,000 for the turbulators and Reh=1,500 to 16,200 for the backward facing step are presented, where Reynolds numbers are based on turbulator height b and step height h, respectively. Plots of the velocity field, vorticity, reverse flow probability and RMS velocity are shown. The focus is on the steady flow behavior but also the unsteadiness of the flow is discussed in one section. Also reattachment lengths were obtained and compared among the various turbulator arrangements and the backward facing step geometry. It was found that the flow becomes periodic after three or four ribs. For one turbulator, a very large separation region was observed. The magnitude of the skin friction factor was found to be the highest for two ribs. If the first rib is replaced by a smaller rib, the skin friction factor becomes the lowest for this case. Compared to the backward facing step, the flow reattaches earlier for multiple turbulators. A dependency of reattachment length on Reynolds number was not observed.
|
Page generated in 0.027 seconds