• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 306
  • 229
  • 120
  • 71
  • 37
  • 33
  • 20
  • 18
  • 13
  • 8
  • 6
  • 5
  • 5
  • 4
  • 3
  • Tagged with
  • 1275
  • 675
  • 304
  • 136
  • 135
  • 129
  • 117
  • 94
  • 91
  • 87
  • 83
  • 75
  • 72
  • 71
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Desenvolvimento de um método para determinação simultânea de compostos carbonílicos tóxicos durante a vinificação e avaliação do risco da exposição a estes compostos

Ferreira, Daiani Cecchin January 2017 (has links)
Propriedades benéficas são associadas ao consumo moderado de vinho devido à presença dos compostos fenólicos. Uma dose diária de vinho de até 200 ou 300 mL é sugerida para mulheres e homens, respectivamente. Entretanto, dentre os compostos presentes nos vinhos, podem ser encontrados compostos carbonílicos tóxicos, como o formaldeído, acroleína, acetaldeído, furfural e carbamato de etila, os quais tem sido associados a efeitos adversos à saúde humana, incluindo o câncer. O objetivo deste trabalho foi desenvolver e validar um método para a quantificação simultânea destes compostos tóxicos através da microextração em fase sólida no modo headspace associada à cromatografia gasosa acoplada à espectrometria de massas quadrupolar no modo de monitoramento de íons selecionados (HS-SPME- GC/qMS-SIM) e caracterizar o risco relacionado à exposição a estes compostos. Quatro etapas da vinificação (uva, mosto, após a fermentação alcoólica e vinho) e vinhos comercialmente disponíveis foram analisados com o uso da GC/qMS-SIM após verificar as coeluições através da cromatografia gasosa bidimensional abrangente acoplada ao detector de espectrometria de massas por tempo de voo (GC×GC- TOFMS). O acetaldeído e a acroleína derivatizados coeluíram na primeira dimensão cromatográfica com o limoneno e o hexanoato de metila, respectivamente. Em função disso, foram escolhidos como íons quantificadores na análise por GC/qMS, íons que não foram encontrados no espectro de massas dos compostos coeluídos. Os parâmetros de validação (LOD, LOQ, recuperação, repetibilidade e reprodutibilidade) mostraram que a HS-SPME-GC/qMS-SIM é adequada para quantificar simultaneamente os cinco compostos tóxicos. A acroleína foi encontrada em concentrações similares na uva e mosto, e não foi detectada após a fermentação alcoólica e no vinho. O acetaldeído foi detectado em menores concentrações no mosto e em maiores níveis após a fermentação alcoólica. A concentração de furfural foi maior nas uvas do que nas demais etapas. O carbamato de etila não foi detectado nas etapas da vinificação e nos vinhos comerciais. Os níveis de formaldeído ficaram entre os valores de LOD e LOQ em todas as etapas da vinificação e nos vinhos comerciais. Além disso, nos vinhos comercialmente disponíveis, a acroleína foi encontrada em 50% das amostras, o acetaldeído e o furfural estavam presentes em todas as amostras. O único composto cuja ingestão pode representar risco a saúde é a acroleína. Dessa forma, este estudo contribuiu para identificar os pontos críticos de controle relacionados à presença de compostos tóxicos durante a vinificação, incluindo a produção do acetaldeído durante a fermentação alcoólica e a contaminação das uvas com acroleína e furfural através do ar atmosférico. Além disso, os resultados da ocorrência destes compostos tóxicos em vinhos comercialmente disponíveis poderão contribuir para a criação de uma legislação nacional que estabeleça limites dos mesmos nesta bebida. / Beneficial properties are associated with moderate consumption of wine due to the presence of phenolic compounds. A daily intake of wine of up to 200 or 300 mL is suggested for women and men, respectively. However, toxic carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, furfural and ethyl carbamate can be found among the compounds present in wines, which have been associated with adverse effects on human health, including cancer. The objective of this work was to develop and validate a method for simultaneous quantification of these toxic compounds through headspace solid phase microextraction associated with gas chromatography with quadrupole mass spectrometric detection in selected-ion monitoring mode (HS-SPME-GC/qMS-SIM) and characterize the risk related to exposure to these compounds. Four vinification steps (grape, must, after alcoholic fermentation and wine) and commercially available wine were analyzed using GC/qMS-SIM after checking the coelutions by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS). The derivatized acetaldehyde and acrolein coeluted in the first chromatographic dimension with limonene and methyl hexanoate, respectively. Based on this, were chosen as quantifiers ions in GC/qMS analysis, ions that were not found in the mass spectra of the coeluted compounds. The validation parameters (LOD, LOQ, recovery, repeatability and reproducibility) showed that HS-SPME-GC/qMS-SIM is adequate to simultaneously quantify the five toxic compounds. Acrolein was found at similar concentrations in grape and must, and was not detected after alcoholic fermentation and in wine. Acetaldehyde was detected at lower concentrations in the must and at higher levels after alcoholic fermentation. The concentration of furfural was higher in the grapes than in the other stages. Ethyl carbamate was not detected in the vinification steps and in commercially wine. Formaldehyde levels were between the LOD and LOQ values at all stages of winemaking and commercial wines. In addition, in commercially available wines, acrolein was found in 50% of samples, acetaldehyde and furfural were present in all samples. The only compound whose intake may pose a health risk is acrolein. Thus, this study contributed to identify critical control point related to the presence of toxic compounds during winemaking, including the production of acetaldehyde during alcoholic fermentation and the contamination of grapes with acrolein and furfural through atmospheric air. In addition, the results of the occurrence of these toxic compounds in commercially available wines may contribute to the creation of national legislation that establishes limits of the same in this drink.
292

Desenvolvimento de um método para determinação simultânea de compostos carbonílicos tóxicos durante a vinificação e avaliação do risco da exposição a estes compostos

Ferreira, Daiani Cecchin January 2017 (has links)
Propriedades benéficas são associadas ao consumo moderado de vinho devido à presença dos compostos fenólicos. Uma dose diária de vinho de até 200 ou 300 mL é sugerida para mulheres e homens, respectivamente. Entretanto, dentre os compostos presentes nos vinhos, podem ser encontrados compostos carbonílicos tóxicos, como o formaldeído, acroleína, acetaldeído, furfural e carbamato de etila, os quais tem sido associados a efeitos adversos à saúde humana, incluindo o câncer. O objetivo deste trabalho foi desenvolver e validar um método para a quantificação simultânea destes compostos tóxicos através da microextração em fase sólida no modo headspace associada à cromatografia gasosa acoplada à espectrometria de massas quadrupolar no modo de monitoramento de íons selecionados (HS-SPME- GC/qMS-SIM) e caracterizar o risco relacionado à exposição a estes compostos. Quatro etapas da vinificação (uva, mosto, após a fermentação alcoólica e vinho) e vinhos comercialmente disponíveis foram analisados com o uso da GC/qMS-SIM após verificar as coeluições através da cromatografia gasosa bidimensional abrangente acoplada ao detector de espectrometria de massas por tempo de voo (GC×GC- TOFMS). O acetaldeído e a acroleína derivatizados coeluíram na primeira dimensão cromatográfica com o limoneno e o hexanoato de metila, respectivamente. Em função disso, foram escolhidos como íons quantificadores na análise por GC/qMS, íons que não foram encontrados no espectro de massas dos compostos coeluídos. Os parâmetros de validação (LOD, LOQ, recuperação, repetibilidade e reprodutibilidade) mostraram que a HS-SPME-GC/qMS-SIM é adequada para quantificar simultaneamente os cinco compostos tóxicos. A acroleína foi encontrada em concentrações similares na uva e mosto, e não foi detectada após a fermentação alcoólica e no vinho. O acetaldeído foi detectado em menores concentrações no mosto e em maiores níveis após a fermentação alcoólica. A concentração de furfural foi maior nas uvas do que nas demais etapas. O carbamato de etila não foi detectado nas etapas da vinificação e nos vinhos comerciais. Os níveis de formaldeído ficaram entre os valores de LOD e LOQ em todas as etapas da vinificação e nos vinhos comerciais. Além disso, nos vinhos comercialmente disponíveis, a acroleína foi encontrada em 50% das amostras, o acetaldeído e o furfural estavam presentes em todas as amostras. O único composto cuja ingestão pode representar risco a saúde é a acroleína. Dessa forma, este estudo contribuiu para identificar os pontos críticos de controle relacionados à presença de compostos tóxicos durante a vinificação, incluindo a produção do acetaldeído durante a fermentação alcoólica e a contaminação das uvas com acroleína e furfural através do ar atmosférico. Além disso, os resultados da ocorrência destes compostos tóxicos em vinhos comercialmente disponíveis poderão contribuir para a criação de uma legislação nacional que estabeleça limites dos mesmos nesta bebida. / Beneficial properties are associated with moderate consumption of wine due to the presence of phenolic compounds. A daily intake of wine of up to 200 or 300 mL is suggested for women and men, respectively. However, toxic carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, furfural and ethyl carbamate can be found among the compounds present in wines, which have been associated with adverse effects on human health, including cancer. The objective of this work was to develop and validate a method for simultaneous quantification of these toxic compounds through headspace solid phase microextraction associated with gas chromatography with quadrupole mass spectrometric detection in selected-ion monitoring mode (HS-SPME-GC/qMS-SIM) and characterize the risk related to exposure to these compounds. Four vinification steps (grape, must, after alcoholic fermentation and wine) and commercially available wine were analyzed using GC/qMS-SIM after checking the coelutions by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS). The derivatized acetaldehyde and acrolein coeluted in the first chromatographic dimension with limonene and methyl hexanoate, respectively. Based on this, were chosen as quantifiers ions in GC/qMS analysis, ions that were not found in the mass spectra of the coeluted compounds. The validation parameters (LOD, LOQ, recovery, repeatability and reproducibility) showed that HS-SPME-GC/qMS-SIM is adequate to simultaneously quantify the five toxic compounds. Acrolein was found at similar concentrations in grape and must, and was not detected after alcoholic fermentation and in wine. Acetaldehyde was detected at lower concentrations in the must and at higher levels after alcoholic fermentation. The concentration of furfural was higher in the grapes than in the other stages. Ethyl carbamate was not detected in the vinification steps and in commercially wine. Formaldehyde levels were between the LOD and LOQ values at all stages of winemaking and commercial wines. In addition, in commercially available wines, acrolein was found in 50% of samples, acetaldehyde and furfural were present in all samples. The only compound whose intake may pose a health risk is acrolein. Thus, this study contributed to identify critical control point related to the presence of toxic compounds during winemaking, including the production of acetaldehyde during alcoholic fermentation and the contamination of grapes with acrolein and furfural through atmospheric air. In addition, the results of the occurrence of these toxic compounds in commercially available wines may contribute to the creation of national legislation that establishes limits of the same in this drink.
293

Non-target screening of sediment samples fromthe Canadian Arctic: comparing two different gas chromatography – high resolution mass spectrometry (GC-HRMS) techniques

Timner, Mathilda January 2022 (has links)
Since the late 18th century, chemicals have been industrially produced, and used by consumers. Today, the number of registered chemicals are over 150 000 in North America and Europe alone, and the number is predicted to increase. Industrial or anthropogenic chemicals can, directly or indirectly, be released into the ecosystem during their lifetime, where they can cause harm to human health and the environment. Depending on their properties, chemicals can travel far away from its source, causing global contamination. Through this, the Arctic region becomes a sink for many different types of contaminants. Because of the danger certain chemicals pose, techniques to detect and identify them in environmental samples have evolved during recent years. In these cases, non-targeted screening methods are commonly used to characterise contaminants in samples.In this study, surface sediment samples were collected on three locations in the Hudson Bay (Canada). The samples were analysed using two different instruments: a comprehensive two-dimensional gas chromatograph coupled to a high resolution time-of-flight mass spectrometer (GC×GC-HR-ToF-MS) and a gas chromatograph coupled with a Orbitrap mass spectrometer (GC-Orbitrap-MS). After data acquisition and processing, certain components were identified in both datasets, and their semi-quantitative concentrations were calculated.Overall, 32 compounds were detected and identified in the Orbitrap dataset, and 17 of these were also detected in the GC×GC dataset. The concentration was determined semi-quantitively for the identified compounds and ranged from 0.005–333 ng/g dry weight (d.w.) for the Orbitrap dataset, and 0.013–278 ng/g d.w. for the GC×GC dataset, which was below, or in the lower half, of concentration ranges from previous studies. Overall, the data processing for Orbitrap data seems to be more advanced and evolved than for GC×GC data, causing differences between the results from the two instruments.
294

A phylogenomic assessment of ancient polyploidy and genome evolution across the Poales

McKain, Michael R., Tang, Haibao, McNeal, Joel R., Ayyampalayam, Saravanaraj, Davis, Jerrold I., dePamphilis, Claude W., Givnish, Thomas J., Pires, J. Chris, Stevenson, Dennis Wm., Leebens-Mack, Jim H. 17 March 2016 (has links)
Comparisons of flowering plant genomes reveal multiple rounds of ancient polyploidy characterized by large intragenomic syntenic blocks. Three such whole-genome duplication (WGD) events, designated as rho (rho), sigma (sigma), and tau (tau), have been identified in the genomes of cereal grasses. Precise dating of these WGD events is necessary to investigate how they have influenced diversification rates, evolutionary innovations, and genomic characteristics such as the GC profile of protein-coding sequences. The timing of these events has remained uncertain due to the paucity of monocot genome sequence data outside the grass family (Poaceae). Phylogenomic analysis of protein-coding genes from sequenced genomes and transcriptome assemblies from 35 species, including representatives of all families within the Poales, has resolved the timing of rho and sigma relative to speciation events and placed tau prior to divergence of Asparagales and the commelinids but after divergence with eudicots. Examination of gene family phylogenies indicates that rho occurred just prior to the diversification of Poaceae and sigma occurred before early diversification of Poales lineages but after the Poales-commelinid split. Additional lineage-specific WGD events were identified on the basis of the transcriptome data. Gene families exhibiting high GC content are underrepresented among those with duplicate genes that persisted following these genome duplications. However, genome duplications had little overall influence on lineage-specific changes in the GC content of coding genes. Improved resolution of the timing of WGD events in monocot history provides evidence for the influence of polyploidization on functional evolution and species diversification.
295

Seabird ecology in relation to fisheries

Meraz Hernando, Juan Francisco January 2011 (has links)
Previous research has hinted at changes in the migratory patterns of seabirds nesting in Scotland, including a decreasing number of Northern Gannets Morus bassanus wintering in the North Sea, and an increase in numbers of Northern Gannets and Great Skuas Stercorarius skua spending the winter off north-western Africa (NWA). Both species show increasing numbers of colonies in northern areas, including Norway and Russia. These seabird species move through the North Sea during autumn migration, and from there search for favourable wintering grounds mainly around Iberia, including the Atlantic coast of Portugal, the Bay of Biscay and the Gulf of Cadiz. By means of historic ring recovery data, provided by the British Trust for Ornithology, it was possible to establish that the number of records of adults of both species are increasing in recent years from NWA coasts, despite having to attend their nests in the colonies and, as a result, having limited time to migrate south. Differences were observed in ring recovery locations between years and months. The number of ring recoveries by month coincides with records from observation points along the coast of Western Europe. However, ring recovery data are limited and potentially biased. Using data loggers, it was possible to establish that both species are diurnal in habits during the entire winter period, showing noticeable differences in the times spent flying during the migration months (September-October) and during the wintering and breeding months (January and March respectively), and to confirm the increasing tendency to winter off NWA in recent years. Analyses of fishing landings, discard rates, and sea surface temperature data, show that food available to Northern Gannets and Great Skuas is increasing in NWA coasts where oceanographic conditions are stable; in contrast in the North Sea fisheries are decreasing and the sea surface is warming. Both species are apparently changing their migratory behaviour in order to face the constant changes in the abundance of food. Given the long life-span of Northern Gannets and Great Skuas, genetic changes can be ruled out of an explanation for the changes in migration behaviour, and the fact that the changes in winter distribution appear to be occurring within one generation of the birds. The winter distribution of Northern Gannets and Great Skuas may be due to an ideal free distribution over a wide range, in response to changes in the distribution of fish and the availability of discards.
296

The impacts of ocean acidification on calcifying macroalgae

Williamson, Christopher James January 2015 (has links)
The ecophysiology of calcified macroalgal species of the genera Corallina (C. officinalis and C. caespitosa) and Ellisolandia (E. elongata) (Corallinales, Rhodophyta) was examined in intertidal rock pools of the NE Atlantic, to facilitate predictions of ocean-acidification and warming impacts on these ecosystem engineers. An initial phylogenetic study highlighted significant cryptic diversity within the genus Corallina, and demonstrated that C. officinalis is restricted predominantly to the North Atlantic, while the recently established C. caespitosa shows a cosmopolitan distribution. Three subsequent studies were performed across the NE Atlantic (Iceland to northern Spain) to examine (i) the production, respiration, calcification and growth of Corallina in relation to irradiance, water temperature, and carbonate chemistry; (ii) the photoacclimation and photoregulation strategies of Corallina and Ellisolandia; and (iii) the recent-past (1850 – 2010) and present-day skeletal mineralogy (Mg/Ca ratios) of Corallina and Ellisolandia and its relationship to sea surface temperature. Data demonstrated that species currently experience significant seasonal and tidal fluctuations in abiotic conditions that may be important when considering future responses to ocean-acidification and climate-change. Seasonality in production, calcification and growth were demonstrated, with decreasing growth observed with increasing latitude. Photoacclimation to allow maximal light utilisation during winter periods, and photoregulation via nonphotochemical quenching were highlighted as important in allowing Corallina and Ellisolandia to maintain maximal productivity while controlling for photo-stress. Seasonal cycles in skeletal Mg incorporation were demonstrated with strong relation to sea surface temperature, though no significant change in skeletal mineralogy was evident since pre-industrial times. Taken together, data indicated that Corallina and Ellisolandia have the potential to survive under future ocean-acidification and warming conditions, though loss of species at high latitudes and shifts in the relative abundances of species across the region is likely to be evident, with overall range contraction predicted for C. officinalis due to both warming and ocean-acidification impacts.
297

Methods for multi-class segmentation of molecular sequences

Cheng, Ming-Te January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
298

Développements méthodologiques pour l’extraction et l’analyse des polluants organiques d’intérêt pour l’environnement marin : application aux hydrocarbures aromatiques polycycliques

Kanan, Rami 20 December 2012 (has links)
La présence d’hydrocarbures dans l’environnement que ce soit suite à un déversement accidentel de pétrole en mer ou suite à des apports chroniques, est une préoccupation majeure en raison de leur écotoxicité et de leur potentiel à être bioaccumulés, et ainsi, pénétrer la chaîne alimentaire. Par conséquent, ces molécules sont sous haute surveillance et il est nécessaire de disposer de méthodes analytiques permettant de les identifier et de les quantifier, et ceci, pour des concentrations allant du mg/L au ng/L. Cependant et dans la plupart des cas, les analyses en laboratoire des hydrocarbures, notamment aromatiques, se limitent à la quantification des 16 hydrocarbures aromatiques polycycliques (HAP) identifiés par l’Agence américaine de Protection Environnementale (US-EPA) comme étant dangereux pour l’environnement du fait de leur caractère cancérigène. Or, les hydrocarbures aromatiques polycycliques soufrés (HAPS) ainsi que leurs homologues substitués sont, sur le plan chimique, structurellement proches des HAP, et peuvent donc présenter des risques environnementaux similaires, à savoir être cancérigènes ou mutagènes. Le travail de recherche réalisé s’inscrit dans ce contexte avec pour objectif des développements méthodologiques permettant l’extraction et l’analyse d’une gamme plus large de HAP, des HAPS et leurs dérivés alkylés directement dans les produits pétroliers ou dissous en phase aqueuse. Des protocoles d’extraction par "stir bar sorptive extraction" (SBSE) et par microextraction sur phase solide (SPME), et des méthodes d’analyse par chromatographie en phase gazeuse couplée à la spectrométrie de masse simple (GC-MS) et en tandem (GC-MS-MS) ont été développés. Les résultats obtenus plaident en faveur de ces méthodologies aussi bien en termes de linéarité de la réponse qu’en termes de sensibilité, méthodologies qui ont été appliquées avec succès pour la détermination des analytes d’intérêt dans des fractions solubles préparées au laboratoire (WAF et WSF). Pour la CG-MS-MS, si elle se révèle particulièrement adaptée car elle apporte un degré de certitude élevé, elle n’en reste pas moins une technique délicate à mettre en oeuvre, notamment dans le cas des composés alkylés pour lesquels des solutions étalons ne sont pas disponibles. Pour pallier cette difficulté, un produit de référence contenant l’ensemble des analytes d’intérêt a été caractérisé. Pour les composés alkylés non disponibles commercialement, des appro-ximations ont été effectuées par MS simple en se basant sur une analyse comparée des coefficients de réponse en mode MRM et SIM. La méthodologie ainsi mise au point a permis de caractériser le fioul de l’Erika avec une faible variabilité des résultats. Ce produit peut servir de référence pour l’analyse quantitative de l’ensemble des familles de composés identifiés dans cette étude. / The presence of hydrocarbons in the environment either as a result of oil spills at sea or due to chronic discharge is a major concern because of their ecotoxicity and their potential to bioaccumulate and thus enter the food chain. Therefore, these molecules are closely monitored and reliable analytical methods are required to identify and quantify them, for concentrations ranging from mg/L to ng/L. However, in most cases, laboratory analyses of hydrocarbons, especially aromatic hydrocarbons, are limited to the quantification of 16 polycyclic aromatic hydrocarbons (PAHs) identified by the U.S. Environmental Protection Agency (U.S. EPA) as hazardous to the environment due to their carcinogenic nature. However, polycyclic aromatic sulphur heterocycles (PASHs) and their substituted homologs are, in chemical terms, structurally similar to PAHs, and therefore can pose similar environmental risks, i.e. they can be carcinogenic or mutagenic. In this context, the research work carried out aims to develop methodologies for the extraction and analysis of a wider range of PAHs, PASHs and their alkyl derivatives directly in oil or dissolved in the aqueous phase. Extraction protocols by stir bar sorptive extraction (SBSE) and solid phase microextraction (SPME), and methods of analysis by gas chromatography coupled with mass spectrometry (GC-MS) and with tandem mass spectrometry (GC-MS-MS) have been developed. The results argue in favor of these methodologies both in terms of linearity of the response and in terms of sensitivity. These methodologies that have been successfully applied for the determination of analytes of interest in the water accommodated fraction and water soluble fraction prepared in the laboratory (WAF and WSF). For GC-MS-MS, while it is particularly suitable because it provides an additional level of selectivity, it is a difficult technique to implement, in particular in the case of molecules for which no calibration solutions are available. To overcome this difficulty, a reference oil containing all the target molecules was characterized. For alkylated compounds that are not commercially available, approximations were made by simple MS, based on comparative analysis of response coefficients in MRM (Multiple Reaction Monitoring) and SIM (Single Ion Monitoring) modes. The finalized method was used to characterize the Erika fuel oil, with low variability in the results. This product can be used as a reference for the quantitative analysis of all the families of molecules identified in this study.
299

Studien über technologiebedingte Veränderungen der Aromaprofile von Fruchtsäften / Studies on technologically caused changes in aroma profiles of fruit juices

Elß, Sandra January 2007 (has links) (PDF)
Ziel dieser Arbeit war es, technologiebedingte Veränderungen im Profil flüchtiger Inhaltsstoffe während der Fruchtsaftverarbeitung aufzuzeigen. Gleichzeitig sollte eine Bewertung von artfremden ‚carry over’-Aromastoffen erfolgen und deren Einfluss auf das Aromaprofil eines Fruchtsaftes beurteilt werden. Hierzu wurden aus unterschiedlichen Phasen der Fruchtsaftherstellung authentische Proben (Direktsäfte, Recovery-Aromen, Saftkonzentrate) von der Schutzgemeinschaft der Fruchtsaftindustrie (SGF) zur Verfügung gestellt. Ergänzt wurde diese Palette durch industrielle Halb- und Fertigwaren, um Abweichungen vom geforderten authentischen Profil zu definieren. Es kamen dabei für die Fruchtsaftverarbeitung wesentliche Fruchtarten (Apfel, Orange, Ananas, Pfirsich und Passionsfrucht) zur Anwendung. Die Bestimmung der Aromaprofile erfolgte anhand validierter qualitativer und quantitativer Aromastoffanalytik. Nach Abtrennung und Anreicherung der Aromastoffe mittels Simultaner Destillation-Extraktion (SDE) wurden die Extrakte per Kapillargaschromatographie-Massenspektrometrie (HRGC-MS) analysiert. Durch den Einsatz sensorischer Untersuchungen wurden Schwellenwerte von ausgewählten ‚carry over’-Aromastoffen und ‚off-flavour’-Komponenten in fünf verschiedenen Matrices ermittelt. Zusammenfassend lässt sich an Einzelergebnissen festhalten: Das bei Ananasfrüchten erhaltene Aromaprofil entsprach weitgehend Literaturangaben. Während bei den geprüften Recovery-Aromen partiell gute Übereinstimmung mit dem Aromaprofil der Frucht gefunden wurde, war bei den Handelssäften aus Konzentrat meist nur die jeweils bei den entsprechenden Saftkonzentraten ermittelte, praktisch nur von Furaneol determinierte Aromastoffzusammensetzung zu finden. Die geprüften Direktsäfte – sieht man von ihren vergleichsweise hohen Acetoinanteilen ab - zeigten fruchtähnliche Aromaprofile. 2-Ethylhexansäure (2-EHA) wurde als technologiebedingte Kontaminante in Fruchtsäften und Babynahrung festgestellt. In 80% bzw. 73% der geprüften Babynahrung- und Fruchtsaftproben – darunter auch Bio-Produkte - wurde die Substanz nachgewiesen. Die im Tierversuch als teratogen eingestufte Verbindung migriert aus den Deckel-Dichtungen der Glasverpackungen in das Lebensmittel. Orangensaft-Fertigprodukte wiesen im Vergleich zu authentischen ‚single strength’-Proben einen niedrigeren Gehalt an Aromastoffen auf. Empfindliche Aromastoffe wie Ethyl-2-methylbutanoat und Z-3-Hexenal sind in den analysierten Handelsproben nicht mehr detektiert worden. Die Verbindungen Ethylbutanoat, Hexanal und Z-3-Hexenal wurden nur im Essenzöl von Orangen nachgewiesen, nicht aber in Schalenölproben. Eine eindeutige Unterscheidung von (wertvollem) Orangen-Essenzöl und (geringwertigerem) Orangen-Schalenöl ist derzeit ausschließlich anhand von HRGC-MS ermittelter Aromaprofile nicht möglich. Um 13C-markierte Standards zur Stabilisotopenverdünnungsanalyse (SIVA) zu erhalten, wurden entsprechende Synthesen für die wichtigen Komponenten des Orangenaromas, Limonen und a–Terpineol, durchgeführt. Mittels SIVA ist es möglich, diese Verbindungen in Orangensäften, aber auch in Kosmetika exakt zu quantifizieren. Als Hauptkomponenten des Aromaprofils von Apfelsäften und Recovery-Aromen sind die Verbindungen 1-Butanol, 1-Hexanol, E-2-Hexenal, E-2-Hexenol und Butylacetat bestätigt worden. Das produzierte Saftkonzentrat enthält neben Erhitzungsprodukten wie Furfural keine charakteristischen Apfelaromastoffe mehr. Das ubiquitäre Auftreten in allen industriell frisch gepressten Apfelsäften von 3-Methyl-1-butanol und dessen Acetat, beides bekannte Indikatoren für Gärprozesse, scheint technologisch schwer vermeidbar zu sein. Die große Spanne von 0,01 mg/l bis 2,1 mg/l 3-Methyl-1-butanol in Apfelsaft macht aber deutlich, dass sich der Gehalt an fermentativ gebildeten Komponenten während der Fruchtsaftverarbeitung durchaus gering halten kann. Eine legislative Regulierung zum Vorkommen dieser Stoffe in Apfelsaft ist erforderlich. Bei der destillativen Recovery-Aroma-Gewinnung aus Apfelsäften zeigte sich die Tendenz einer leichten Abreicherung der d2HV-SMOW–Werte von Saft zu korrespondierendem Destillat. Anhand von Korrelationen der ermittelten 13C/12C- und 2H/1H-Daten von 1-Hexanol, E-2-Hexenal und E-2-Hexenol wird deutlich, dass eine Authentizitätsbewertung aber von diesem marginalen Effekt nicht berührt wird. Die Spuren an Fremdaromen zeigen, dass es unter der technologisch üblichen Produktions- und Reinigungspraxis zu Kontaminationen von artfremden Aromastoffen im Verlauf der Fruchtsaftherstellung kommen kann. Die Kombination aus ermittelten Schwellenwerten von ‚carry-over’-Aromastoffen und deren tatsächliches Auftreten in Fruchtsäften zeigte, dass keine sensorische Beeinträchtigung der Produkte vorliegt. Ein höheres Potential, Produkte negativ zu beeinflussen, bergen die in Orangensäften in relevanten Gehalten nachgewiesenen ‚off-flavour’-Komponenten a–Terpineol und Carvon. / The aim of this study was to elucidate technologically caused changes in the profile of volatile components during fruit juice processing. In addition, the occurrence of ’carry-over’ aroma compounds foreign to the species and their influence on the aroma profile should be evaluated. For this, authentic samples from different stages of the fruit juice processing, i.e. ’single strength’-juices, recovery aromas, and fruit juice concentrates, were provided by the Schutzgemeinschaft der Fruchtsaftindustrie (SGF). Included were also industrial semi-finished products and fruit juices purchased in supermarkets, to define variations from the authentic profile. The most important species used for fruit juice processing (apple, orange, pineapple, peach, and passion fruit) were considered. The determination of aroma profiles was carried out by a validated qualitative and quantitative aroma analysis. Aroma compounds were separated and enriched by simultaneous distillation-extraction (SDE) and subsequently analysed by high resolution gas chromatography-mass spectrometry (HRGC-MS). Using sensory tests the thresholds of selected ’carry-over’-compounds and off-flavour-components in five different matrices were determined. Summarizing, the following informations were acquired: The obtained aroma profile of pineapple fruits corresponded to a large extent with that described in the literature. Whereas the recovery aromas accorded, in part, with the profile of the fresh fruit, the pineapple juices made from concentrate showed an aroma profile that was similar to the aroma composition of juice concentrates. These were essentially dominated by furaneol. The commercial ’single strength’-juices under study exhibited, apart from high amounts of acetoin, fruit-like aroma profiles. 2-Ethylhexanoic acid (2-EHA) was found as technological contaminant in fruit juices and baby foods. In 80% of the baby food and 73% of the fruit juice samples under study – among them products labelled ’organic’ – this substance was identified. Being known as teratogenic and potent carcinogeric compound for rodents, 2-EHA migrates from the plastic askets inside the metal lids into the food. Commercial orange juices contained lower amounts of aroma compounds compared to authentic ’single strength’-juices. Sensitive volatile components like ethyl 2-methylbutanoate and Z-3-hexenal were not detected in the commercial orange juices under study. The substances ethyl butanoate, hexanal and Z-3-hexenal were determined only in orange essence oil but not in any orange peel oil. An unambiguous differentiation between the high priced orange essence oil and the less valuable orange peel oil is not possible on the basis of HRGC-MS data to date. In order to obtain 13C-labeled standards for the stable isotope dilution assay, syntheses for important orange flavour compounds, i.e. limonene and a–terpineol were carried out. By means of these standards it was possible to quantify these substances in orange juices and cosmetics (limonene is one of the aroma compounds classified as allergenic and has to be declared on cosmetics containing a defined amount). The components 1-butanol, 1-hexanol, E-2-hexenal, E-2-hexenol, and butyl acetate were verified as main constituents of the aroma profile of apple juices and recovery aromas. Besides heating products such as furfural, the profile of the juice concentrates contained no characteristic apple aroma compounds. The ubiquitous occurrence of 3-methyl 1-butanol and its acetate, both known indicators for fermentation processes, seems to be technologically hard to avoid in industrial ’single strength’-juices. The wide range from 0.01 to 2.1 mg/l shows that the yield of 3-methyl 1-butanol can be minimized during fruit juice processing. Legislative regulations to determine limits of the presence of 3-methyl 1-butanol and its acetate in apple juice are necessary. Using distillative recovery of apple juice aroma the slight trend of a depletion of d2HV-SMOW values was observed from apple juice to the corresponding recovery aroma. The correlation of 13C/12C- and 2H/1H-values of 1-hexanol, E-2-hexenal, and E-2-hexenol showed that the authenticity assessment by stable isotope ratio-mass spectrometry is not affected by this negligible effect. The detected traces of ’carry-over’ components indicate that contaminations of aroma compounds can occur under normal fruit juice production conditions. However, the combination of determined thresholds and the real amounts of the substances in fruit juices showed that the commercial products are not influenced in their sensory quality. ’Off-flavour’ components of orange juices, i.e. a–terpineol and carvon, possess with their relevant amounts an increased potential to affect the taste and odour of commercial products.
300

Bioremediation of hydrocarbon water pollution by bioaugmentation using Southern African bacterial isolates

Booyjzsen, Claire 15 May 2008 (has links)
ABSTRACT A new, non-pathogenic bioaugmentation product was formulated specifically for underground use in South African mines, using local bacterial isolates. This was designed for the remediation of various hydrocarbons via biochemical breakdown by sub-surface microorganisms. The active microorganisms were isolated from hydrocarbon-polluted areas of a gold mine. Many commercially available bioaugmentation products are already in existence however, all, to our knowledge, have been developed and tested primarily for use in the northern hemisphere. None have been formulated and tested in Africa. Our series of bacterial isolates are the first to be isolated from mine soils for hydrocarbon biodegradation purposes. Such isolates have further, not previously been tested on sub-surface contamination. The safety associated with the use of such a product in a closed mine-environment is of paramount importance. Initial batch-flask experiments were conducted using a readily-available commercial bioremediation product. This was tested on simple surfactant molecules and compared to the biodegradation observed under standard waste water treatment plant conditions. The bioremediation product increased biodegradation by 6% on average. Bacteria in the product were identified by 16S rDNA gene sequence analysis and found to be homologous to potentially pathogenic Bacillus cereus, known especially to effect immunocompromised individuals, this was of particular concern in the closed mine system. South African isolates were sourced from various hydrocarbon-polluted sources, with six bacteria ultimately being selected from deep sub-surface mine soil and water samples. The ability of these isolates to biodegrade waterborne monograde engine oil was assessed via GC-FID. The isolate showing average percentage growth increase, homologous to Pseudomonas pseudoalcaligenes, was found to degrade the motor oil by 98%. The new isolates were, on average, 16% more efficient at biodegrading petroleum hydrocarbons than the commercial bioremediation product isolates. Formulation of these isolates into the first commercially-available South African developed and tested bioaugmentation product will prove a successful conclusion to this study.

Page generated in 0.02 seconds