• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • Tagged with
  • 17
  • 17
  • 17
  • 17
  • 17
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Soil Erosion Risk Mapping Using Geographic Information Systems: A Case Study On Kocadere Creek Watershed, Izmir

Okalp, Kivanc 01 December 2005 (has links) (PDF)
Soil erosion is a major global environmental problem that is increasing year by year in Turkey. Preventing soil erosion requires political, economic and technical actions / before these actions we must learn properties and behaviors of our soil resources. The aims of this study are to estimate annual soil loss rates of a watershed with integrated models within GIS framework and to map the soil erosion risk for a complex terrain. In this study, annual soil loss rates are estimated using the Universal Soil Loss Equation (USLE) that has been used for five decades all over the world. The main problem in estimating the soil loss rate is determining suitable slope length parameters of USLE for complex terrains in grid based approaches. Different algorithms are evaluated for calculating slope length parameters of the study area namely Kocadere Creek Watershed, which can be considered as a complex terrain. Hickey&amp / #8217 / s algorithm gives more reliable topographic factor values than Mitasova&amp / #8217 / s and Moore&amp / #8217 / s. Satellite image driven cover and management parameter (C) determination is performed by scaling NDVI values to approximate C values by using European Soil Bureau&amp / #8217 / s formula. After the estimation of annual soil loss rates, watershed is mapped into three different erosion risk classes (low, moderate, high) by using two different classification approaches: boolean and fuzzy classifications. Fuzzy classifications are based on (I) only topographic factor and, (II) both topographic and C factors of USLE. By comparing three different classified risk maps, it is found that! in the study area topography dominates erosion process on bare soils and areas having sparse vegetation.
12

Numerical Modeling Of Edremit Geothermal Field

Gunay, Emre 01 September 2012 (has links) (PDF)
The purpose of this study is to examine the geothermal potential, sustainability, and reinjection possibility of Edremit geothermal field. In order to investigate this, a numerical model consisting of a hot and cold water aquifer system is established. A two dimensional cross sectional model is set to simulate this geothermal system. Different pressure and temperature values are applied to the nodes at the boundaries to perform a steady state calibration which minimizes the computed results and observed values obtained from the near well logs. After the calibration, three alternative scenarios are proposed and the response of the pressure and temperature to these conditions is evaluated. At first the water is pumped from the wells of Yagci, Derman, Entur and ED-3 seperately at a mass rate of 5 kg/s and energy rate of 4.182 x 105 J/s. Then, in scenario 2 the water is pumped at the same rate from all the wells mentioned in the first scenario together. For the third scenario another well is opened to the geothermal system and 80% of the pumped water (temperature being 200C) is injected to the system from the wells while all the wells mentioned are working. The results of these scenarios are utilized to evaluate the reservoir in terms of its response to different production and reinjection conditions. Interpretation of the reservoir response in view of the pressure and temperature declines emphasize that such a simulation study can be applied to assess potential and sustainability of the geothermal systems.
13

Evaluation Of Best Environmental Management Practices Of An Integrated Iron And Steel Plant

Cakir, Nur 01 September 2012 (has links) (PDF)
European Union published IPPC Directive in 1996 aiming to create an integrated approach in order to manage and control industrial facilities better. IPPC provides the development of a new concept of &ldquo / Best Available Techniques (BAT)&rdquo / , the most effective, advanced and applicable methods, preventing emissions to the environment and providing efficient use of resources. Within this framework, numerous sectoral Best Available Techniques Reference Documents were published giving information on the sector and BAT alternatives for this sector. Iron and steel industry, which causes quite significant amount of resource depletion and waste production, is one of the industries within the scope of IPPC Directive. In the this study, environmental performance of an integrated iron and steel plant in Turkey is evaluated and compared with the EU&rsquo / s integrated iron and steel plants, in order to suggest applicable BAT alternatives for the studied plant. Totally 74 BAT alternatives were evaluated and among them 36 alternatives were determined to be applicable for this plant. Finally, two of these applicable BAT alternatives were selected and compared by use of cross-media effects and financial analysis. The results of this study indicated that dust emission and high energy consumption are the common problems in the facility. Moreover, sintering process was found to be the least compatible sub-process with EU&rsquo / s iron and steel plants. Additionally, it was determined that with respect to application of BAT alternatives, facility is quite compatible with EU&rsquo / s iron v and steel plants. Furthermore, cross media effect and financial analysis revealed that the selected BAT alternatives, &ldquo / Advanced Electrostatic Precipitator (ESP)&rdquo / and &ldquo / Bag Filter-combined or integrated reduction of solid and gaseous pollutants&rdquo / , have different cross media effects on the environment, however, the second alternative is a more cost-effective alternative than the first one. Since this study was undertaken in an integrated iron and steel plant that represents Turkish iron and steel industry with respect to its production process, production capacity and environmental performance / the results of this study can be used to aid decision makers to make environmental initiatives in iron and steel industry in Turkey.
14

Modelling And Analyzing The Uncertainty Propagation In Vector-based Network Structures In Gis

Yarkinoglu Gucuk, Oya 01 September 2007 (has links) (PDF)
Uncertainty is a quantitative attribute that represents the difference between reality and representation of reality. Uncertainty analysis and error propagation modeling reveals the propagation of input error through output. Main objective of this thesis is to model the uncertainty and its propagation for dependent line segments considering positional correlation. The model is implemented as a plug-in, called Propagated Band Model (PBM) Plug-in, to a commercial desktop application, GeoKIT Explorer. Implementation of the model is divided into two parts. In the first one, model is applied to each line segment of the selected network, separately. In the second one, error in each segment is transmitted through the line segments from the start node to the end node of the network. Outcomes are then compared with the results of the G-Band model which is the latest uncertainty model for vector features. To comment on similarities and differences of the outcomes, implementation is handled for two different cases. In the first case, users digitize the selected road network. In the second case recently developed software called Interactive Drawer (ID) is used to allow user to define a new network and simulate this network through Monte Carlo Simulation Method. PBM Plug-in is designed to accept the outputs of these implementation cases as an input, as well as generating and visualizing the uncertainty bands of the given line network. Developed implementations and functionality are basically for expressing the importance and effectiveness of uncertainty handling in vector based geometric features, especially for line segments which construct a network.
15

Development Of A Gis-based Monitoring And Management System For Underground Mining Safety

Salap, Seda 01 September 2008 (has links) (PDF)
Mine safety is of paramount concern to the mining industry. The generation of a Geographic Information Systems (GIS) which can administrate relevant spatial data and metadata of underground mining safety efficiently is a very vital issue in this sense. In an effort to achieve a balance of safety and productivity, GIS can contribute to the creation of a safe working environment in underground (U/G) mining. Such a system should serve to a continuous risk analysis and be designed for applications in case of emergency. Concept for safety should require three fundamental components, namely (i) constructive safety / (ii) surveillance and maintenance / and (iii) emergency. The implementation has to be carried out in a Web-Based Geographic Information System. The process comprises first the safety concept as the application domain model and then a conceptual model was generated in terms of Entity- Relationship Diagrams. After the implementation of the logical model a user interface was developed and GIS was tested. Finally, one should deal with the question if it is possible to extend the method of resolution used to a national GIS infrastructure.
16

Gis-based Spatial Model For Wildfire Simulation: Marmaris &amp / #65533 / Cetibeli Fire

Tasel, Erdinc 01 November 2003 (has links) (PDF)
Each year many forest fires have occurred and huge amount of forest areas in each country have been lost. Turkey like many world countries have forest fire problem. 27 % of Turkey&amp / #65533 / s lands are covered by forest and 48 % of these forest areas are productive, however 52 % of them must be protected. There occurred 21000 forest fires due to several reasons between 1993 and 2002. It is estimated that 23477 ha area has been destroyed annually due to wildfires. The fire management strategies can be built on the scenarios derived from the simulation processes. In this study a GIS &amp / #65533 / based fire simulating model is used to simulate a past fire occurred in Marmaris &amp / #65533 / &Ccedil / etibeli, Turkey, in August 2002. This model uses Rothermel&amp / #65533 / s surface fire model, Rothermel&amp / #65533 / s and Van Wagner&amp / #65533 / s crown fire model and Albini&amp / #65533 / s torching tree model. The input variables required by the model can be divided into four groups: fuel type, fuel moisture, topography and wind. The suitable fuel type classification of the vegetation of the study area has been performed according to the Northern Forest Fire Laboratory (NFFL) Fuel Model. The fuel moisture data were obtained from the experts working in the General Directorate of Forestry. The fire spread pattern was derived using two IKONOS images representing the pre- and post-fire situations by visual interpretation. Time of arrival, the rate of spread and the spread direction of the fire were obtained as the output and 70 % of the burned area was estimated correctly from the fire simulating model.
17

Composition Of Atmosphere At The Central Anatolia

Yoruk, Ebru 01 January 2004 (has links) (PDF)
Concentrations of elements and ions measured in samples collected between February 1993 and December 2000 at a rural site in central Anatolia were investigated to evaluate the chemical composition of atmosphere at central Anatolia, to determine pollution level of the region, to study temporal variability of the pollutants and to investigate the sources and source regions of air pollutants in the region. Level of pollution at central Anatolia was found to be lower than the pollution level at other European countries and Mediterranean and Black Sea regions of Turkey. Enrichment factor calculations revealed that SO42-, Pb and Ca are highly enriched in the aerosol / whereas, soil component has dominating contribution on observed concentrations of V, Mg, Ca and K. SO42-/(SO2+SO42-) ratio observed in &Ccedil / ubuk station indicates that contribution of distant sources is more important than the contribution of local sources on observed SO42- levels. SO42-/NO3- ratio calculations showed that Central Anatolia is receipt of SO42- from Eastern European countries. Positive Matrix Factorization (PMF) analysis revealed 6 source groups, namely motor vehicle source, mixed urban factor, long range transport factor, soil factor, NO3- factor and Cd factor. Distribution of Potential Source Contribution Function (PSCF) values showed that main source areas of SO42-, NH4+ and Cd are western parts of Turkey, Balkan countries, central and western Europe, central Russian Federation and north of Sweden and Finland / NO3- are the regions located around the Mediterranean Sea / and there is no very strong potential source area observed for NH3 and Pb.

Page generated in 0.1127 seconds