• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 30
  • 23
  • 16
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 198
  • 30
  • 23
  • 20
  • 19
  • 18
  • 18
  • 16
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

An electron spin resonance study of native starch systems

Nolan, Nancy L. January 1985 (has links)
Call number: LD2668 .T4 1985 N64 / Master of Science
42

Aerosol Gel production via controlled detonation of liquid precursors

Gilbertson, Sarah Elizabeth January 1900 (has links)
Master of Science / Department of Physics / Christopher M. Sorensen / This work emphasizes advancements in Aerosol Gelation. We have attempted to expand the available materials used to synthesize Aerosol Gels by moving away from gas phase precursors toward liquid phase precursors and eventually reactants in the solid phase. The primary challenge was to efficiently administer the liquid fuels into the detonation chamber. After several attempts, it was concluded that the most efficient delivery technique was to heat the liquid fuel past the vapor point and evaporate it into the oxidizing gas for combustion. This method consistently yields soot with a density of 3.2 mg/cc approximately 10 minutes after the combustion. It was concluded that four criterion must be met to create an Aerosol Gel from a liquid: 1. The liquid must be as finely divided as possible 2. The energy of the spark must be large enough to cause a sustainable combustion 3. The fuel must have a Lower Explosive Limit above the necessary concentration to meet a volume fraction of 10[superscript]4 4. The fuel must have a relatively low boiling point
43

A comparison on the release modifying behaviour of chitosan and kollidon SR / Carel Petrus Bouwer

Bouwer, Carel Petrus January 2007 (has links)
Controlled release formulations deliver an active ingredient over an extended period of time. It is an ideal dosage form for an active ingredient with a short elimination half-life. An active ingredient with a short elimination half-life would be released in small portions over an extended period of time and thus less frequent administration is necessary and this improve patient compliance. Other advantages of these formulations include: decreased side effects, constant drug levels in the blood, improvement in treatment efficiency and reduction in cost of administration. Controlled release beads are formulated in such a way that the active ingredient is embedded in a matrix of insoluble substance like chitosan; the dissolving drug then has to find its way through the pores of the matrix into the surrounding medium. The chitosan matrix swells to form a gel, the drug then has to first dissolve in the matrix and diffuse through the outer surface into the surrounding medium. Chitosan is a biocompatible, biodegradable polymer of natural origin. It has mucoadhesive properties as well as the ability to manipulate the tight junctions in the epithelium membrane and these properties have qualified chitosan as an effective drug carrier in controlled release dosage forms. The effect of a modern controlled release polymer namely Kollidon® SR in combination with chitosan on drug release was investigated. Ketoprofen was chosen as model drug. Ketoprofen is an anti-inflammatory drug that causes gastrointestinal side effects in conventional dosage forms. Ketoprofen has a short elimination half-life of 2.05 ± 0.58 h and this characteristic makes it an ideal candidate for use in a controlled release formulation. The aim of this study was to achieve controlled release and minimize gastrointestinal effects of ketoprofen with chitosan particles. Kollidon® SR was used as polymer because it exhibits pH independent release characteristics and previous studies have shown potential for this combination. Chitosan beads and chitosan-Kollidon® SR beads, as well as chitosan granules and chitosan-Kollidon® SR granules, were prepared and investigated as potential controlled release formulations. Chitosan beads were prepared through the inotropic gelation method using tripolyphosphate as a cross linking agent. Granules were prepared through wet granulation using 2% v/v acetic acid as the granulating fluid or by dissolving ketoprofen in ethanol and Kollidon® SR in 2-pyrrolidinone and using the solution as granulating fluid. Kollidon® SR was added in concentrations of 0.25, 0.5 and 1% (w/v) in the bead formulations and concentrations of 1, 5 and 10% (w/w) in the granule formulations. The beads and granules were characterised by evaluating the following properties: morphology, drug loading and drug release. Additionally swelling and friability tests were also conducted on the bead formulations. The cross linking times of the bead formulations were varied to investigate the effect of cross linking time on the characteristics of the beads. Chitosan-Kollidon® SR beads showed promising results for controlled release formulations and ketoprofen were released over an extended period of time. Drug loading of the plain chitosan beads was 74.65 ± 0.71% and it was noted that the inclusion of Kollidon® SR in the beads resulted in an increase in drug loading and the formulation containing 1% (w/v) Kollidon® SR, cross linked for 30 minutes had a drug loading of 77.38 ± 0.01%. Drug loading of the beads that were cross linked for a longer time were slightly lower which is an indication that some of the drug might have leached out during cross linking. The degree of swelling was promising with some beads swelling to a degree of 2.5 in phosphate buffer solution pH 5.6. Granules had a drug loading between 81.73 ± 1.53% and 93.30 ± 0.50%. Ketoprofen release from the beads and the granules in PBS pH 7.40 at 37 °C over a period of 6 hours were investigated. The bead formulations were more effective in achieving controlled release and it was noted that the bead formulations that was cross linked for a longer period was more efficient in achieving controlled release. The granules did not form a matrix and were not effective in achieving controlled release. Controlled release of ketoprofen were achieved and the results show potential for chitosan-Kollidon® SR formulations in the future. / Thesis (M.Sc. (Pharmaceutics))--North-West University, Potchefstroom Campus, 2008.
44

Efeitos de variáveis do processo de gelificação interna nas propriedades físicas e químicas de microesferas de alumina / Variable effects of the internal gelation process in the physical and chemical properties of alumina microspheres

Christe, Charles de Miranda 18 December 2012 (has links)
Microesferas cerâmicas vêm sendo utilizadas em diferentes aplicações, relacionadas à área nuclear, farmacêutica, química, médica, ambiental, biotecnológica, etc. É possível a obtenção, pelo método da gelificação interna, de microesferas de diferentes materiais cerâmicos, densas ou porosas (com porosidade controlada) e com diferentes tamanhos. No entanto o grande obstáculo é a formação de trincas na secagem e/ou calcinação, que podem inviabilizar a aplicação das mesmas. Este trabalho tem como objetivo a produção de microesferas a base de alumina (Al2O3) pelo processo de gelificação interna, variando-se parâmetros de processamento de forma a se controlar as características físicas e químicas das mesmas, como tamanho, porosidade, superfície específica, etc., além de características específicas que viabilizem a aplicação das mesmas no preenchimento de colunas de eluição de geradores de 99Mo-99mTc. Foi desenvolvida uma metodologia simples e eficiente de tratamento de lavagem das microesferas, que possibilita a extração de uma porção significativa da fase orgânica presente antes da secagem e calcinação; desta forma elimina-se praticamente todas as trincas que surgiriam durante a secagem, e principalmente na etapa de calcinação. Além disso, foram variados parâmetros de processo que permitem controlar a porosidade e superfície específica das microesferas. Foram também caracterizadas em paralelo, duas aluminas de transição na forma de pós, utilizadas atualmente no preenchimento de colunas do gerador de 99Mo-99mTc de modo a se ter uma noção das atuais exigências quanto às propriedades fisicas do material de preenchimento. / Ceramic microspheres have been used in various applications, related to the nuclear, pharmaceutical, chemical, medical, environmental, biotechnology, etc. It is possible to obtain, by internal gelation method, microspheres of different ceramic materials, dense or porous (with controlled porosity) and different sizes. However, the major obstacle is the formation of cracks on drying and / or calcination, which can hinder their use. This study have an objective at the production of alumina (Al2O3) based microspheres by internal gelation process, varying processing parameters in order to control the chemical and physical characteristics such as size, porosity, specific surface area, etc., in addition to specific characteristics that enable their application in filling of the elution columns of 99Mo-99mTc generators. It was developed a simple and efficient method of washing treatment of the microspheres, which enables the extraction of a significant portion of the organic phase present prior to drying and calcination; thus virtually eliminates all cracks that arise during drying, and particularly in calcination step. In addition, process parameters were varied for controlling the porosity and specific surface of the microspheres. Were also characterized in parallel, two transition aluminas in the form of powders currently used in filling of elution columns of 99Mo-99mTc generator so as to get an idea of the current requirements for physical properties of the filling material.
45

The structure and rheological properties of liquified natural gas gelled with water and methanol clathrates

Shanes, Lucile Marie January 1977 (has links)
Thesis. 1977. Ph.D.--Massachusetts Institute of Technology. Dept. of Chemical Engineering. / Microfiche copy available in Archives and Science. / Bibliography : leaves 414-426. / by Lucile M. Shanes. / Ph.D.
46

Efeitos de variáveis do processo de gelificação interna nas propriedades físicas e químicas de microesferas de alumina / Variable effects of the internal gelation process in the physical and chemical properties of alumina microspheres

Charles de Miranda Christe 18 December 2012 (has links)
Microesferas cerâmicas vêm sendo utilizadas em diferentes aplicações, relacionadas à área nuclear, farmacêutica, química, médica, ambiental, biotecnológica, etc. É possível a obtenção, pelo método da gelificação interna, de microesferas de diferentes materiais cerâmicos, densas ou porosas (com porosidade controlada) e com diferentes tamanhos. No entanto o grande obstáculo é a formação de trincas na secagem e/ou calcinação, que podem inviabilizar a aplicação das mesmas. Este trabalho tem como objetivo a produção de microesferas a base de alumina (Al2O3) pelo processo de gelificação interna, variando-se parâmetros de processamento de forma a se controlar as características físicas e químicas das mesmas, como tamanho, porosidade, superfície específica, etc., além de características específicas que viabilizem a aplicação das mesmas no preenchimento de colunas de eluição de geradores de 99Mo-99mTc. Foi desenvolvida uma metodologia simples e eficiente de tratamento de lavagem das microesferas, que possibilita a extração de uma porção significativa da fase orgânica presente antes da secagem e calcinação; desta forma elimina-se praticamente todas as trincas que surgiriam durante a secagem, e principalmente na etapa de calcinação. Além disso, foram variados parâmetros de processo que permitem controlar a porosidade e superfície específica das microesferas. Foram também caracterizadas em paralelo, duas aluminas de transição na forma de pós, utilizadas atualmente no preenchimento de colunas do gerador de 99Mo-99mTc de modo a se ter uma noção das atuais exigências quanto às propriedades fisicas do material de preenchimento. / Ceramic microspheres have been used in various applications, related to the nuclear, pharmaceutical, chemical, medical, environmental, biotechnology, etc. It is possible to obtain, by internal gelation method, microspheres of different ceramic materials, dense or porous (with controlled porosity) and different sizes. However, the major obstacle is the formation of cracks on drying and / or calcination, which can hinder their use. This study have an objective at the production of alumina (Al2O3) based microspheres by internal gelation process, varying processing parameters in order to control the chemical and physical characteristics such as size, porosity, specific surface area, etc., in addition to specific characteristics that enable their application in filling of the elution columns of 99Mo-99mTc generators. It was developed a simple and efficient method of washing treatment of the microspheres, which enables the extraction of a significant portion of the organic phase present prior to drying and calcination; thus virtually eliminates all cracks that arise during drying, and particularly in calcination step. In addition, process parameters were varied for controlling the porosity and specific surface of the microspheres. Were also characterized in parallel, two transition aluminas in the form of powders currently used in filling of elution columns of 99Mo-99mTc generator so as to get an idea of the current requirements for physical properties of the filling material.
47

Investigation of Solubilization, Cold Gelation, and Rennet Coagulation Properties of Highly Concentrated Micellar Casein Concentrate for Use in Cheese Making

Lu, Ying 01 May 2016 (has links)
Highly concentrated micellar casein concentrate (HC-MCC), a potential ingredient for cheese making, containing ~20% casein with ~70% of serum proteins removed by microfiltration, and diafiltration of skim milk, and then further concentrated by vacuum evaporation. The objectives of this research were to investigate solubilization, cold gelation, rennet coagulation properties of recombined HC-MCC and cream for its use in cheese making. In Chapter 3, either mixing thawed HC-MCC in water at high temperature (~50C) or addition of trisodium citrate can achieve complete dispersion and more than 80% solubility of HC-MCC in water (3% protein). Overnight storage helps to fully disperse HC-MCC, but only reaches ~30% of solubility at 20C. Cold-gelation of HCMCC is thermally reversible and reducing protein levels in HC-MCC can decrease its CGT. The HC-MCC with less than 16% of protein does not gel at 5C. We propose that cold-gelation of HC-MCC occurs when the kinetic energy of the casein micelles is sufficiently reduced to inhibit their mobility in relation to adjacent casein micelles. In Chapter 4, the recombined concentrated milk (RCM) by mixing thawed frozen HC-MCC and cream with 12% casein at pH 6.6 does not gel until cooled below 12°C. Addition of either sodium citrate or high levels of calcium increased CGT, although low levels of calcium did not impact CGT. Cold gelation of RCM was thermally reversible, even when citrate was added to partially chelate calcium. We propose that cold gelation of RCM occurs when protein strands that have been partially released from the casein micelles entangle, restrict their mobility and form a fine stranded gel network. The RCM at a casein level of 12% (wt/wt) has potential for use in cheese making. In Chapter 5, reducing rennet level can increase coagulation time of RCM (11% casein) without impact on curd firmness or firming rate. Decreased coagulation temperature helps to increase coagulation time and decrease curd firmness rate, but also increases the initial viscosity of RCM. Pre-acidified RCM has no advantage in increasing coagulation time, decreasing curd firmness or firming rate. Microstructure of RCM and its coagulum indicates that the increased curd firmness probably results from the highly inter-linked and longer protein strands in RCM curd. Reducing rennet level can be applied to slow down rennet coagulation of RCM (11% casein) in cheese making.
48

Isolation and characterization of a high gelling protein from soybean

Abdolgader, Ramadan E. January 2000 (has links)
No description available.
49

Rheological and Thermodynamic Properties of PEO-PPE-PEO and PAA-g-PEO-PPO-PEO System

Tian, Y., Dai, S., Tam, Michael K. C., Bromberg, Lev, Hatton, T. Alan 01 1900 (has links)
Rheological and thermodynamic properties of Pluronic F127 copolymer and Pluronic-g-PAA have been studied as a function of temperature and concentration. A combination of rheometry and DSC was employed to examine the gelation behavior of F127 and F127-g-PAA. The viscosity of F127 is extremely sensitive to temperature when the polymer concentration exceeds 10 wt%. But significant increase of viscosity has been observed for 1.0 wt%F127-PAA aqueous solution as a function of temperature. This could be due to the PAA grafts, acting as cross-links attached to the F127 backbone. / Singapore-MIT Alliance (SMA)
50

Direct observation of correlated motions in colloidal gels and glasses

Gao, Yongxiang. January 2008 (has links)
Dynamical heterogeneity (DH) has been observed in many systems approaching the glass or jamming transition. Whether DH has a structural origin is under heated debate. To provide a deeper understanding, in this thesis I investigate the microscopic dynamics in weakly attractive colloidal systems by confocal fluorescence microscopy. The van Hove density-density correlation function is applied to our systems. Separable fast and slow populations emerge in the self part (svH), while the distinct part shows a strong signature of DH close to the gel transition. At intermediate time, svH shows a purely exponential tail, mainly arising from the fast population. I show that this broad tail is a direct consequence of the occurrence of rare large jumps that are statistically distributed. The slow population tends to form a space-spanning backbone, and its mean squared displacement close to the gel transition exhibits a plateau, whose height is consistent with the range of attraction, suggesting a bonding mechanism for the dynamical arrest. I further examine various quantities characterizing local structure and local dynamics and a strong correlation is identified between them. Subsequently, I develop order parameters for quantifying amorphous structure and apply them to our systems. I find that attractive colloidal systems exhibit higher order under higher attraction tension, while hard spheres become more ordered under higher compression. Finally, I investigate the effect of the range of attraction on the structure and dynamics of attractive colloidal systems. I observe that the system with shorter range of attraction forms a denser and more heterogeneous structure. Meanwhile, I observe an even stronger dynamical heterogeneity. These observations provide further evidence of a connection between structural heterogeneity and dynamical heterogeneity in these systems, providing guidance for a theoretical description of the dynamical arrest as well as the relaxation mechanisms upon gelation and its relation to solidification in glasses. / In order to do all of this, I first implemented full 3D subpixel resolution localization of particles and improved particle tracking algorithms tailored for the sorts of heterogenous dynamics these systems exhibit, that otherwise confounds existing methods such that the very relaxation mechanisms would be missed. This allows us to obtain unprecedented precision in positions of all of the particles and complete tracking, both of which are essential for correctly determining system properties that depend on measured particle dynamics.

Page generated in 0.032 seconds