• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 8
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Умножение в пространстве обобщенных функций : магистерская диссертация / Multiplication in the space of generalized functions

Колыванова, А. Б., Kolyvanova, A. B. January 2015 (has links)
We obtain a generalization of the Sokhotskii formula for the forth degree by means of methods of theory of residues. We obtain relations of Mikusinskii and Gonzalez – Dominguez type that connect distributions and hyperdistributions. We obtain an analog of the Sokhotskii formula for an arbitrary positive integer. / Получены обобщения формулы Сохоцкого для четвертой степени методами теории вычетов. Получены соотношения типа Микусинского и Гонсалеса – Домингеса, связывающие распределения и гиперраспределения. Было получено обобщение формулы Сохоцкого для любого натурального числа.
12

Funções generalizadas, modelos de crescimento contínuos e discretos e caminhadas estocásticas em meios desordenados / Generalized functions, discrete and continuous growth models and stochastic walks on disordered media

Gonzalez, Rodrigo Silva 06 July 2011 (has links)
Este trabalho está divido em duas partes. Na primeira apresentamos as funções logaritmo e exponencial generalizadas. A partir delas uma grande variedade de outras funções generalizadas pode ser obtida, permitindo uma formulação única dos comportamentos oscilatório, exponencial e lei de potência, característicos dos principais fenômenos físicos. Também mostramos que é possível generalizar a função densidade de probabilidade (pdf) exponencial estendida (stretched exponential) e, a partir dela, uma vasta gama de outras pdfs, que caracterizam os sistemas complexos em Física. As funções logaritmo e exponencial generalizadas também são úteis na generalização de vários modelos contínuos de crescimento em uma formulação única: o modelo de crescimento generalizado de Tsoullaris e Wallace. O mesmo pode ser feito para modelos discretos de crescimento, obtendo, como modelo mais geral, o -Ricker generalizado. Encerrando a primeira parte, mostramos que a pdf gaussiana generalizada (um caso particular da exponencial estendida generalizada) é a solução da equação de difusão não-linear, que caracteriza a caminhada determinista do turista. Na segunda parte deste trabalho é apresentada a caminhada do turista e suas duas versões originais: a determinista (CDT) e a estocástica (CET). A primeira delas é uma caminhada parcialmente autorrepulsiva, caracterizada por uma memória , em um meio desordenado multidimensional formado por N pontos. Em um ambiente unidimensional, ela apresenta uma transição entre uma exploração local e outra global, em um valor bem definido de memória 1 = log2N. Em sua versão estocástica (da qual a CDT é um caso particular), a dinâmica de movimentação é regida pela memória e pela temperatura T, responsável, em última instância, pelas probabilidades de deslocamento. Da mesma forma que a CDT, a CET também apresenta uma transição entre os regimes de exploração, caracterizada por uma memória e uma temperatura críticas e pela idade Np da caminhada (efeito de envelhecimento). Dada a dificuldade em tratar analiticamente a CET, introduzimos a caminhada estocástica modificada do turista (CEMT). Nesta versão, o parâmetro T passa a representar o alcance máximo de um passo da caminhada. Esta modificação permitiu tratar analiticamente a caminhada, sendo possível obter uma expressão analítica geral para a transição, em função dos parâmetros , T e Np. Estes resultados foram validados por experimentos numéricos. / The present work is splitted into two parts. In the first one we present the generalized logarithm and exponential functions. From them, a wide variety of other generalized functions can be obtained, that allow a unique formulation of oscillatory, exponential an power-law behaviors, that characterize physical phenomena. We also show that it is possible to generalize the stretched exponential probability density function (pdf) and, from there, a wide range of other pdfs that characterize complex systems in Physics. The generalized logarithm and exponential functions are also useful to generalize several continuous growth models into a single formulation: the generalized Tsoullaris and Wallace growth model. The same can be done for discrete growth models, getting, as more general model, the generalized -Ricker growth model. Concluding the first part, we show that the generalized Gaussian pdf (a special case of the generalized stretched exponential) is a solution of the nonlinear diffusion equation, which is a characteristic of deterministic tourist walk. In the second part we present the tourist walk and its two original versions: the deterministic one (DTW) and stochastic one (STW). The first one is a partially self-avoiding walk over a disordered multidimensional medium formed by N points and characterized by a memory . In a one-dimensional environment, it presents a transition from a local exploration to a global one at a well-defined memory value 1 = log2N. In its stochastic version (from which DTW is a particular case), the movement dynamics is ruled by the memory and a temperature T which is responsible by the displacement probabilities. Similar to DTW, STW also has a transition between exploration schemes, characterized by a critical memory and temperature and the walking age (Np) (aging effect). Due the difficulty on analytical treatment of the CET, we introduced the modified stochastic tourist walk (MSTW). In this version, the parameter T plays the role of a maximum distance of one walking step. This modification allowed us to treat analytically the walk, being possible to obtain a general analytical expression for the transition, as function to the parameters , T and Np. These results were validated by numerical experiments.
13

Funções generalizadas, modelos de crescimento contínuos e discretos e caminhadas estocásticas em meios desordenados / Generalized functions, discrete and continuous growth models and stochastic walks on disordered media

Rodrigo Silva Gonzalez 06 July 2011 (has links)
Este trabalho está divido em duas partes. Na primeira apresentamos as funções logaritmo e exponencial generalizadas. A partir delas uma grande variedade de outras funções generalizadas pode ser obtida, permitindo uma formulação única dos comportamentos oscilatório, exponencial e lei de potência, característicos dos principais fenômenos físicos. Também mostramos que é possível generalizar a função densidade de probabilidade (pdf) exponencial estendida (stretched exponential) e, a partir dela, uma vasta gama de outras pdfs, que caracterizam os sistemas complexos em Física. As funções logaritmo e exponencial generalizadas também são úteis na generalização de vários modelos contínuos de crescimento em uma formulação única: o modelo de crescimento generalizado de Tsoullaris e Wallace. O mesmo pode ser feito para modelos discretos de crescimento, obtendo, como modelo mais geral, o -Ricker generalizado. Encerrando a primeira parte, mostramos que a pdf gaussiana generalizada (um caso particular da exponencial estendida generalizada) é a solução da equação de difusão não-linear, que caracteriza a caminhada determinista do turista. Na segunda parte deste trabalho é apresentada a caminhada do turista e suas duas versões originais: a determinista (CDT) e a estocástica (CET). A primeira delas é uma caminhada parcialmente autorrepulsiva, caracterizada por uma memória , em um meio desordenado multidimensional formado por N pontos. Em um ambiente unidimensional, ela apresenta uma transição entre uma exploração local e outra global, em um valor bem definido de memória 1 = log2N. Em sua versão estocástica (da qual a CDT é um caso particular), a dinâmica de movimentação é regida pela memória e pela temperatura T, responsável, em última instância, pelas probabilidades de deslocamento. Da mesma forma que a CDT, a CET também apresenta uma transição entre os regimes de exploração, caracterizada por uma memória e uma temperatura críticas e pela idade Np da caminhada (efeito de envelhecimento). Dada a dificuldade em tratar analiticamente a CET, introduzimos a caminhada estocástica modificada do turista (CEMT). Nesta versão, o parâmetro T passa a representar o alcance máximo de um passo da caminhada. Esta modificação permitiu tratar analiticamente a caminhada, sendo possível obter uma expressão analítica geral para a transição, em função dos parâmetros , T e Np. Estes resultados foram validados por experimentos numéricos. / The present work is splitted into two parts. In the first one we present the generalized logarithm and exponential functions. From them, a wide variety of other generalized functions can be obtained, that allow a unique formulation of oscillatory, exponential an power-law behaviors, that characterize physical phenomena. We also show that it is possible to generalize the stretched exponential probability density function (pdf) and, from there, a wide range of other pdfs that characterize complex systems in Physics. The generalized logarithm and exponential functions are also useful to generalize several continuous growth models into a single formulation: the generalized Tsoullaris and Wallace growth model. The same can be done for discrete growth models, getting, as more general model, the generalized -Ricker growth model. Concluding the first part, we show that the generalized Gaussian pdf (a special case of the generalized stretched exponential) is a solution of the nonlinear diffusion equation, which is a characteristic of deterministic tourist walk. In the second part we present the tourist walk and its two original versions: the deterministic one (DTW) and stochastic one (STW). The first one is a partially self-avoiding walk over a disordered multidimensional medium formed by N points and characterized by a memory . In a one-dimensional environment, it presents a transition from a local exploration to a global one at a well-defined memory value 1 = log2N. In its stochastic version (from which DTW is a particular case), the movement dynamics is ruled by the memory and a temperature T which is responsible by the displacement probabilities. Similar to DTW, STW also has a transition between exploration schemes, characterized by a critical memory and temperature and the walking age (Np) (aging effect). Due the difficulty on analytical treatment of the CET, we introduced the modified stochastic tourist walk (MSTW). In this version, the parameter T plays the role of a maximum distance of one walking step. This modification allowed us to treat analytically the walk, being possible to obtain a general analytical expression for the transition, as function to the parameters , T and Np. These results were validated by numerical experiments.
14

Generalized stochastic processes with applications in equation solving / Uopšteni stohastički procesi sa primenama u rešavanju jednačina

Gordić Snežana 10 May 2019 (has links)
<p>In this dissertation stochastic processes are regarded in the framework of Colombeau-type algebras of generalized functions. Such processes are called Colombeau stochastic processes.The notion of point values of Colombeau stochastic processes in compactly supported generalized points is established. The Colombeau algebra of compactly supported generalized constants is endowed with the topology generated by sharp open balls. The measurability of the corresponding random variables with values in the Colombeau algebra of compactly supported generalized constants is shown.<br />The generalized correlation function and the generalized characteristic function of Colombeau stochastic processes are introduced and their properties are investigated. It is shown that the characteristic function of classical stochastic processes can be embedded into the space of generalized characteristic functions. Examples of generalized characteristic function related to gaussian Colombeau stochastic<br />processes are given. The structural representation of the generalized correlation function which is supported on the diagonal is given. Colombeau stochastic processes with independent values are introduced. Strictly stationary and weakly stationary Colombeau stochastic processes are studied. Colombeau stochastic processes with stationary increments are characterized via their stationarity of the gradient of the process.Gaussian stationary solutions are analyzed for linear stochastic partial differential equations with generalized constant coefficients in the framework of Colombeau stochastic processes.</p> / <p>U disertaciji se stohastički procesi posmatraju u okviru Kolomboove algebre uop&scaron;tenih funkcija. Takve procese nazivamo Kolomboovi stohastički procesi. Pojam vrednosti Kolomboovog stohastičkog procesa u tačkama sa kompaktnim nosačem je uveden. Dokazana je merljivost odgovarajuće slučajne promenljive sa vrednostima u Kolomboovoj algebri uop&scaron;tenih konstanti sa kompaktnim nosačem,&nbsp; snabdevenom topologijom generisanom o&scaron;trim otvorenim loptama. Uop&scaron;tena korelacijska funkcija i uop&scaron;tena karakteristična funkcija Kolomboovog stohastičkog procesa su definisane i njihove osobine su izučavane. Pokazano je da&nbsp; se karakteristična funkcija klasičnog stohastičkog procesa može potopiti u prostor uop&scaron;tenih karakterističnih funkcija. Dati su primeri uop&scaron;tenih karakterističnih funkcija&nbsp; gausovskih Kolomboovih stohastičkih procesa. Data je strukturna reprezentacija uop&scaron;tene korelacijske funkcije sa nosačem na dijagonali. Kolomboovi stohastički procesi sa nezavisnim vrednostima su predstavljeni. Izučavani su strogo stacionarni i&nbsp; slabo stacionarni Kolomboovi stohastički procesi. Kolomboovi stohastički procesi sa stacionarnim prira&scaron;tajima su okarakterisani preko stacionarnosti gradijenta procesa. Gausovska stacionarna re&scaron;enja za linearnu stohastičku parcijalnu diferencijalnu jednačinu sa uop&scaron;tenim konstantnim koeficijentima su analizirana u okvirima Kolomboovih stohastičkih procesa.</p>
15

Uopštena rešenja nekih klasa frakcionih parcijalnih diferencijalnih jednačina / Generalized Solutions for Some Classes of Fractional Partial Diferential Equations

Japundžić Miloš 26 December 2016 (has links)
<p>Doktorska disertacija je posvećena re&scaron;avanju Ko&scaron;ijevog problema odabranih klasa frakcionih diferencijalnih jednačina u okviru Kolomboovih prostora uop&scaron;tenih funkcija. U prvom delu disertacije razmatrane su nehomogene evolucione jednačine sa prostorno frakcionim diferencijalnim operatorima reda 0 &lt; &alpha; &lt; 2 i koeficijentima koji zavise od x i t. Ova klasa jednačina je aproksimativno re&scaron;avana, tako &scaron;to je umesto početne jednačine razmatrana aproksimativna jednačina data preko regularizovanih frakcionih izvoda, odnosno, njihovih regularizovanih množitelja. Za re&scaron;avanje smo koristili dobro poznate uop&scaron;tene uniformno neprekidne polugrupe operatora. U drugom delu disertacije aproksimativno su re&scaron;avane nehomogene frakcione evolucione jednačine sa Kaputovim<br />frakcionim izvodom reda 0 &lt; &alpha; &lt; 2, linearnim, zatvorenim i gusto definisanim<br />operatorom na prostoru Soboljeva celobrojnog reda i koeficijentima koji zavise<br />od x. Odgovarajuća aproksimativna jednačina sadrži uop&scaron;teni operator asociran sa polaznim operatorom, dok su re&scaron;enja dobijena primenom, za tu svrhu&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<br />u disertaciji konstruisanih, uop&scaron;tenih uniformno neprekidnih operatora re&scaron;enja.<br />U oba slučaja ispitivani su uslovi koji obezbeduju egzistenciju i jedinstvenost<br />re&scaron;enja Ko&scaron;ijevog problema na odgovarajućem Kolomboovom prostoru.</p> / <p>Colombeau spaces of generalized functions. In the firs part, we studied inhomogeneous evolution equations with space fractional differential operators of order 0 &lt; &alpha; &lt; 2 and variable coefficients depending on x and t. This class of equations is solved&nbsp; approximately, in such a way that instead of the originate equation we considered the corresponding approximate equation given by regularized fractional derivatives, i.e. their&nbsp; regularized multipliers. In the solving procedure we used a well-known generalized uniformly continuous semigroups of operators. In the second part, we solved approximately inhomogeneous fractional evolution equations with Caputo fractional derivative of order 0 &lt; &alpha; &lt; 2, linear, closed and densely defined operator in Sobolev space of integer order and variable coefficients depending on x. The corresponding approximate equation&nbsp;&nbsp; is a given by the generalized operator associated to the originate&nbsp; operator, while the solutions are obtained by using generalized uniformly continuous solution operators, introduced and developed for that purpose. In both cases, we provided the conditions that ensure the existence and uniqueness solutions of the Cauchy problem in some Colombeau spaces.</p>

Page generated in 0.0282 seconds