• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • 1
  • Tagged with
  • 14
  • 9
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Procédés de mise à l’échelle pour la fabrication et la caractérisation de biocapteurs de graphène à effet de champ

Bencherif, Amira 08 1900 (has links)
Alors que la découverte de matériaux conducteurs de faible dimension fait progresser la mi- niaturisation des composants électroniques, les transistors à effet de champ (FET) peuvent désormais incorporer des éléments à molécule unique comme canal ou grille. Ces petites architectures permettent, entre autres, l’étude de molécules uniques, notamment par l’ob- servation de leur dynamique de repliement-dépliement ou de liaison. Ces études ont été principalement réalisées avec des transistors à effet de champ à base de matériaux unidimen- sionnels (1D) tels que les nanotubes de carbone (CNT) ou les nanofils de silicium. Du fait de leur dimensionnalité réduite, ces matériaux offrent un bon contrôle de leur interaction avec les molécules 0D, et donc de leur intégration au circuit. Cependant, ces matériaux 1D présentent des problèmes de reproductibilité et de mise à l’échelle, du fait qu’ils sont difficiles à croître et/ou à assembler dans les dispositifs FET. Cette thèse s’intéresse à l’utilisation d’un matériau carboné à deux dimensions, le gra- phène, comme alternative pour la fabrication de dispositifs pour l’étude de dynamiques de molécules uniques. En effet, le graphène est un matériau à deux dimensions composé d’un ré- seau hexagonal d’atomes de carbone, avec une excellente conductivité électrique ainsi qu’une chimie à base de carbone permettant l’ancrage de molécules biologiques à sa surface, ce qui en fait un candidat de choix pour la détection électrique de molécules individuelles. Sa di- mensionnalité est aussi compatible avec des procédés de microfabrication à grande échelle, ce qui offre la possibilité d’études statistiques sur de grands nombres de dispositifs. Ainsi, la détection de molécules biologiques utilisant des transistors à effet de champs à base de graphène (GFET) a connu un développement et un engouement important au cours de la dernière décennie, mais plusieurs aspects restent à résoudre, notamment la mise à l’échelle de la fabrication, le contrôle de la chimie de fonctionnalisation, et la miniaturisation du canal à l’échelle de la molécule unique. Dans cette thèse, des contributions sur ces trois aspects sont présentées. Premièrement, je décris une méthode de mise à l’échelle du transfert de graphène dans une optique d’indus- trialisation, par la conception et l’implémentation d’un montage de transfert de graphène permettant l’automatisation et l’augmentation du rendement de la fabrication de GFET. Je m’intéresse ensuite à la fonctionnalisation des dispositifs de graphène avec une molécule d’ancrage communément utilisée dans le cas des biodétecteurs basés sur des GFET, afin de révéler les cinétiques associées à l’adsorption et à l’accumulation de la molécule à la surface du graphène. Enfin le dernier chapitre décrit la conception d’une architecture de GFET pour l’accueil d’une molécule unique d’ADN, basée sur des nanoconstrictions mises en place dans le canal de graphène. Ces constrictions ont été obtenues à l’aide de la lithographie par faisceau d’électrons (EBL) et gravure ionique réactive profonde (DRIE), qui nous permet de modeler des structures à haute résolution de quelques dizaines de nanomètres dans le canal de graphène. Des nanopuits perpendiculaires à la constriction sont par la suite ouverts dans de la résine, favorisant le confinement de la chimie d’immobilisation de la molécule unique en un seul point. J’explore ensuite la liaison d’un brin unique d’ADN sur la nanoconstriction, et l’étude dynamique de son repliement. Cette thèse présente donc des résultats innovants en termes d’architectures et de procédés de mise à l’échelle de GFET à des fins de biodétection. / With the discovery of low-dimensional conductive materials advancing the miniaturization of electronic components, field-effect transistors (FET) can now incorporate single-molecule elements as a channel or gate. Among their applications, these small architectures allow single-molecule studies, for instance by observing their folding-unfolding or binding dy- namics. These studies were mainly carried out with field-effect transistors based on one- dimensional (1D) materials such as carbon nanotubes (CNT) or silicon nanowires (SiNW). Due to their reduced dimensionality, these materials offer good control on their interaction with 0D molecules, and therefore of their integration into the circuit. However, these 1D materials present reproducibility and scaling issues, due to the fact that they are difficult to grow and/or assemble in FET devices. This thesis focuses on the use of a two-dimensional carbon-based material, graphene, as an alternative for the fabrication of devices for studying the dynamics of single molecules. Graphene is a hexagonal network of carbon atoms that offers an excellent electrical conduc- tivity as well as a carbon-based chemistry for anchoring biological molecules on its surface, this makes it a prime candidate for the electrical detection of individual molecules. Above all, its dimensionality is compatible with large-scale microfabrication processes, which offer the possibility of statistical studies on a large number of devices. Thus, the detection of biological molecules using graphene-based field-effect transistors (GFET) has experienced significant development over the past decade, but several aspects remain to be resolved, including scale- up of the manufacturing, control of the functionalization chemistry, and miniaturization of the channel at the single molecule scale. In this thesis, I present contributions on these three aspects. First, I describe a method for scaling up graphene transfer in an industrialization perspective, by designing and implementing a graphene transfer setup allowing automation for increasing the yield of GFET fabrication. I then focus on the functionalization dynamics of graphene devices with an anchor molecule named PBASE (1-Pyrenebutyric acid N-hydroxysuccinimide ester) commonly used in the case of GFET-based biosensors, which reveals the adsorption and accumulation kinetics of the molecule on the graphene surface. Finally, I describe the design of a GFET architecture based on nanoconstrictions implemented in the graphene channel, designed to host a single molecule. These constrictions were obtained using electron beam lithography (EBL) and deep reactive ion etching (DRIE), which allows the modeling of high-resolution features of a few nanometers in the graphene channel. Nanowells were opened in the resin perpendicular to the constriction, promoting single-point, single-molecule chemistry. I then explore the immobilization of a single strand of DNA on nanoconstriction, and the dynamic study of its folding. This thesis therefore presents innovative results in terms of architectures and scaled implementation processes of GFET for biodetection purposes.
12

Příprava a charakterizace atomárně tenkých vrstev / Fabrication and characterization of atomically thin layers

Tesař, Jan January 2020 (has links)
Tato práce se zabývá oblastí dvourozměrných materiálů, jejich přípravou a analýzou. Pravděpodobně nejznámějším zástupcem dvourozměrných materiálů je grafen. Tento 2D allotrop uhlíku, někdy nazývaný „otec 2D materiálů“, v sobě spojuje neobyčejnou kombinaci elektrických, tepelných a mechanických vlastností. Grafen získal mnoho pozornosti a byl také připraven mnoha metodami. Jedna z těchto metod však stále vyniká nad ostatními kvalitou produkovaného grafenu. Mechanická exfoliace je ve srovnání s jinými technikami velmi jednoduchá, takto připravený grafen je však nejkvalitnější. Práce je také zaměřena na optimalizaci procesu tvorby heterostruktur složených z vrstev grafenu a hBN. Dle prezentovaného postupu bylo připraveno několik van der Waalsových heterostruktur, které byly analyzovány Ramanovskou spektroskopií, mikroskopií atomových sil a nízkoenergiovou elektronovou mikroskopií. Měření pohyblivosti nosičů náboje bylo provedeno v GFET uspořádání. Získané hodnoty pohyblivosti prokázaly vynikající transportní vlastnosti exfoliovaného grafenu v porovnání s grafenem připraveným jinými metodami. V práci popsaný proces přípravy je tedy vhodný pro výrobu kvalitních heterostruktur.
13

Development of Graphene Based Gas Sensors

Gautam, Madhav 05 September 2013 (has links)
No description available.
14

Analysis and Optimization of Graphene FET based Nanoelectronic Integrated Circuits

Joshi, Shital 05 1900 (has links)
Like cell to the human body, transistors are the basic building blocks of any electronics circuits. Silicon has been the industries obvious choice for making transistors. Transistors with large size occupy large chip area, consume lots of power and the number of functionalities will be limited due to area constraints. Thus to make the devices smaller, smarter and faster, the transistors are aggressively scaled down in each generation. Moore's law states that the transistors count in any electronic circuits doubles every 18 months. Following this Moore's law, the transistor has already been scaled down to 14 nm. However there are limitations to how much further these transistors can be scaled down. Particularly below 10 nm, these silicon based transistors hit the fundamental limits like loss of gate control, high leakage and various other short channel effects. Thus it is not possible to favor the silicon transistors for future electronics applications. As a result, the research has shifted to new device concepts and device materials alternative to silicon. Carbon is the next abundant element found in the Earth and one of such carbon based nanomaterial is graphene. Graphene when extracted from Graphite, the same material used as the lid in pencil, have a tremendous potential to take future electronics devices to new heights in terms of size, cost and efficiency. Thus after its first experimental discovery of graphene in 2004, graphene has been the leading research area for both academics as well as industries. This dissertation is focused on the analysis and optimization of graphene based circuits for future electronics. The first part of this dissertation considers graphene based transistors for analog/radio frequency (RF) circuits. In this section, a dual gate Graphene Field Effect Transistor (GFET) is considered to build the case study circuits like voltage controlled oscillator (VCO) and low noise amplifier (LNA). The behavioral model of the transistor is modeled in different tools: well accepted EDA (electronic design automation) and a non-EDA based tool i.e. \simscape. This section of the dissertation addresses the application of non-EDA based concepts for the analysis of new device concepts, taking LC-VCO and LNA as a case study circuits. The non-EDA based approach is very handy for a new device material when the concept is not matured and the model files are not readily available from the fab. The results matches very well with that of the EDA tools. The second part of the section considers application of multiswarm optimization (MSO) in an EDA tool to explore the design space for the design of LC-VCO. The VCO provides an oscillation frequency at 2.85 GHz, with phase noise of less than -80 dBc/Hz and power dissipation less than 16 mW. The second part of this dissertation considers graphene nanotube field effect transistors (GNRFET) for the application of digital domain. As a case study, static random access memory (SRAM) hs been design and the results shows a very promising future for GNRFET based SRAM as compared to silicon based transistor SRAM. The power comparison between the two shows that GNRFET based SRAM are 93% more power efficient than the silicon transistor based SRAM at 45 nm. In summary, the dissertation is to expected to aid the state of the art in following ways: 1) A non-EDA based tool has been used to characterize the device and measure the circuit performance. The results well matches to that obtained from the EDA tools. This tool becomes very handy for new device concepts when the simulation needs to be fast and accuracy can be tradeoff with. 2)Since an analog domain lacks well-design design paradigm, as compared to digital domain, this dissertation considers case study circuits to design the circuits and apply optimization. 3) Performance comparison of GNRFET based SRAM to the conventional silicon based SRAM shows that with maturation of the fabrication technology, graphene can be very useful for digital circuits as well.

Page generated in 0.0214 seconds