• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 9
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effet de différentes combinaisons de sous-unités Gℓ[gamma] sur la spécificité du couplage récepteur et effecteur

Robillard, Liliane January 2001 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
2

Protein Kinase C Dependent Inhibition of Kir3.2 (GIRK2) Channel Activity and Its Molecular Determinants

Adney, Scott 26 September 2013 (has links)
Inwardly rectifying potassium (Kir) channels are critically important for regulating resting membrane potential in excitable cells, a job underscored by the severe pathophysiology associated with channel dysfunction. While all Kir channels require the activating lipid PIP2, many of these channels have diverse modulatory factors that couple to PIP2-dependent gating. Channels in the Kir3 (GIRK) family, in particular, have several co-activating elements, including G-protein betagamma subunits, ethanol, and sodium. During stimulation of Gq-coupled receptors, downstream activation of Protein Kinase C can phosphorylate and inhibit Kir3 channels, yet the mechanism of inhibition and phosphorylation sites are incompletely understood. We took a combined experimental and computational approach using neuronal Kir3.2 to investigate how phosphorylation at a putative PKC site identified in Kir3.1/3.4 could lead to channel inhibition. Kir3.2 inhibition was found to depend on the phosphorylation state of Ser-196, although mutagenesis data suggest it functions as an allosteric regulator of PKC inhibition. MD simulations identified a molecular switch whereby phosphorylation of Ser-196 recruits a critical gating residue, Arg-201, away from the sodium coordination site Asp-228. Neutralization of Ser-196 or Arg-201 resulted in less active channels which exhibited increased sensitivity to PKC inhibition. Additionally the interplay of PIP2 and PKC inhibition was examined in depth using homomeric Kir3.2, revealing that increases in channel-PIP2 interactions limit sensitivity to PKC inhibition, whereas low levels of PIP2 increase PKC sensitivity. Neutralization of Ser-196 uncoupled PKC inhibition from this PIP2 dependence. These studies suggest a model whereby PKC inhibition can occur along PIP2-dependent and PIP2-independent pathways, depending on the phosphorylation state of Ser-196.
3

Receptor influences in GIRK current activation and desensitization

Park, Gyu 11 July 2011 (has links)
G protein-coupled receptors (GPCRs) are seven-transmembrane domain receptors that sense extracellular signal and activate intracellular signaling pathways. Metabotropic glutamate receptor 2 (mGluR2) is one of the GPCRs coupled to Gi/o proteins whose Gβγ subunits stimulate G protein-gated inwardly rectifying K+ channels (GIRKs). Previous experiments demonstrated that in planar lipid bilayer both active forms of G proteins [Gα (GTPγS-stimulated) and Gβγ subunits] were required to activate GIRK channels in the absence of the receptor, but surprisingly, the Gβγ subunit alone could activate GIRK channel in the presence of GPCR. Currently, it is not clear whether GPCRs play a role beyond catalyzing the dissociation of Gα and Gβγ subunits in the presence of extracellular agonist and intracellular GTP. Here we compare the G protein-stimulated GIRK currents in the presence and absence of mGluR2 by performing whole-cell patch clamp recordings on two types of cells: a HEK293 cell line stably expressing GIRK channels (HEK/GIRK) and HEK/GIRK cells with mGluR2 expressed transiently. Our experiments revealed that mGluR2 affects the behavior of G proteins even in the absence of the agonist. We show that intracellular application of GTP activated GIRK currents, and the GTP-induced GIRK currents became greater in the presence mGluR2. We also show that desensitization kinetics of the GTP-stimulated GIRK currents became greater and faster in the presence of mGluR2.
4

Pharmacological dissection of the actions of the Mu opioid receptor in the Rostroventral medial medulla

Cano, Marlene 01 December 2013 (has links)
Chronic pain is a significant healthcare problem. It is disabling and diminishes quality of life. Opioids, such as morphine, remain a primary pharmacologic management for chronic pain. Opioids act at mu opioid receptors (MOPr) in the rostroventral medial medulla (RVM) to produce their analgesic effect. The RVM is a critical relay in pain inhibitory and facilitatory pathways of pain modulation. Furthermore, chronic inflammatory pain, produced by CFA hindpaw injection, leads to adaptive changes in the RVM that change the balance of these pathways and increase the potency of opioids. MOPr are known to produce their effects via Gi/o proteins. Pretreatment of several pain modulatory regions with pertussis toxin (PTX) effectively attenuates the antinociceptive effects of MOPr agonists, such as DAMGO. In the RVM, PTX effectively reduced DAMGO stimulated GTPãS binding in uninjured rats. However, despite their effective inactivation of Gi/o proteins, PTX did not diminish the antinociceptive effects of DAMGO in the RVM of uninjured rats. In contrast, in rats with a chronic inflammatory injury, PTX completely abolished the antinociceptive effects of DAMGO. These results suggest a transition from Gi/o independent to Gi/o dependent mechanisms following CFA treatment. In addition, the anti-hyperalgesic effects of DAMGO were not inhibited by PTX, suggesting that DAMGO produces anti-hyperalgesia and antinociception by different mechanisms. In the RVM, MOPr are present both postsynaptically and presynaptically. Postsynaptic MOPr are thought to produce antinociception by activating GIRK channels, resulting in hyperpolarization and inhibition of pain facilitatory neurons. Indeed, inhibition of GIRK channels in the RVM, via microinjection of tertiapin-Q, attenuated the antinociceptive effects of DAMGO in uninjured rats, providing the first behavioral evidence that MOPr agonists produce analgesia via this proposed mechanism. Interestingly, however, tertiapin-Q did not block the anti-hyperalgesic effects of DAMGO, nor did it diminish the antinociceptive effects of DAMGO in the contralateral hindpaw of CFA treated rats. Furthermore, these differential effects of tertiapin-Q in the uninjured and injured rats are not the result of transcriptional down regulation of GIRK channels in the RVM. Finally, tertiapin-Q alone in the RVM produced a modest antinociception in uninjured rats, providing the first evidence of constitutive GIRK channel activity in the RVM and demonstrating a role for these in pain modulation. Presynaptic MOPr are thought to produce antinociception by decreasing GABA release onto pain inhibitory neurons. Indeed, microdialysis studies demonstrated that levels of GABA release were decreased in response to DAMGO perfused into the RVM, as well as to high potassium after perfusion of DAMGO. However, they were not decreased in rats after CFA treatment. This suggests that chronic inflammatory injury alters the presynaptic actions of MOPr agonists in the RVM. Interestingly, levels of GLU release where not altered by DAMGO in uninjured or injured rats. Moreover, basal levels of GLU and GABA were also unaltered by CFA treatment. In conclusion, although MOPr mediate their antinociceptive effects in other pain modulatory regions via Gi/o proteins, this is not the case in the RVM during an uninjured state. However, MOPr-induced antinociception transitions from Gi/o independent to Gi/o dependent mechanisms after CFA treatment. Additionally, these results support both the presynaptic and the postsynaptic postulates by which MOPr agonists are thought to produce their analgesic effects. However, although CFA treatment alters the activity of neurons in the RVM and promotes changes that result in an enhanced anti-hyperalgesic and antinociceptive response to DAMGO in the RVM, neither the postsynaptic nor the presynaptic mechanism, in isolation, seem to account for this enhancement.
5

Molecular and Integrated Systems Physiology of Prolactin

Christensen, Heather R. 23 September 2011 (has links)
No description available.
6

Modulation der Einwärtsgleichrichrichtung von GIRK-Kanälen durch G-Protein Untereinheiten / Modulation of the rectification properties of GIRK channels by G Protein subunits

Hommers, Leif January 2008 (has links) (PDF)
G-Protein-gekoppelte einwärtsgleichrichtende Kalium-Kanäle sind durch zwei Eigenschaften gekennzeichnet: (I) Die Leitfähigkeit für K+-Ionen ist positiv des Kalium-Gleichgewichtspotentials reduziert und (II) die Kanal-Aktivität wird durch Bindung von G betagamma-Dimere heterotrimerer Gi/o-Proteine reguliert. In der Literatur wurde die Aktivierung von GIRK-Kanälen als eine Zunahme ihrer Offenwahrscheinlichkeit unabhängig vom Membranpotential beschrieben. Die vorliegenden Untersuchungen zeigten, dass es bei starker Aktivierung des GIRK-Kanals durch G betagamma-Dimere auch zu einer Abschwächung der Einwärtsgleichrichtung kommt. Im heterologen Expressionssystem konnte bei Rezeptor-Stimulation mit Agonist die Einwärtsgleichrichtung von GIRK-Kanälen abhängig von der Stärke der Koexpression von G betagamma-Dimeren geschwächt werden. Dieser Effekt entstand nicht durch eine Veränderung der Affinität, mit der Polyamine und Mg2+-Ionen den GIRK-Kanal membranpotentialabhängig blockieren. Die Kinetik, mit der Polyamine den GIRK-Kanal blockieren, war nicht verändert; eine Erhöhung der intrazellulären Mg2+-Konzentration um den Faktor 20 konnte eine Abschwächung der Einwärtsgleichrichtung nicht mindern. Es wurde vermutet, dass eine Änderung der Konformation von Strukturen nahe des Selektivitätsfilters die Abschwächung der Einwärtsgleichrichtung verursacht. Gestützt wurde diese Vermutung zum einen dadurch, dass Ba2+- und Cs+-Ionen, die von extrazellulärer Seite her den Kanal an Strukturen nahe des Selektivitätsfilters blockieren können, unter schwach einwärtsgleichrichtenden Bedingungen eine geringere Bindungsaffinität hatten und zum anderen dadurch, dass das relative Ausmaß des GIRK-Kanal-Blocks durch Cs+-Ionen mit der Stärke der Einwärtsgleichrichtung korrelierte. / G Protein-coupled inwardly rectifying potassium channels (GIRK channels) conduct K+ ions at membrane potentials negative of the potassium reversal potential and are activated by binding of G betagamma subunits of heterotrimeric Gi/o proteins. Activation of GIRK channels was described to be a process, which results in an increase in open probabilty independent of the membrane potential. The investigations of this thesis enhance this modell by supoorting evidence, that the degree of rectification becomes weakened upon strong GIRK channel activation. The weakened inward rectification was not associated with a shift in Mg2+ or polyamine binding affinities towards GIRK. It was concluded, that structeres close to the selectivity filter may be involved in the process, as proposed by the finding, that Cs+ and Ba2+ block (which is considered to take place near the selectivity filter) is less efficient in weakly inward rectifying GIRK channels.
7

Die funktionelle Bedeutung der Heteromerisierung von Serotonin-1A und Serotonin-7 Rezeptoren / Functional importance of heteromerisation of serotonin-1A and serotonin-7 receptors

Fröhlich, Matthias January 2011 (has links) (PDF)
Die Heterodimerisierung von G- Protein gekoppelten Rezeptoren (GPCR) stellt ein aktuelles Forschungsgebiet dar, das molekulare Erklärungsmöglichkeiten für die Vielfalt der Signalwege über solche Rezeptoren aufzeigt. Die genauen Funktionen diese Konstrukte in vivo sind bisher erst in Ansätzen erforscht, ebenso wenig die molekularbiologischen Mechanismen. Für die beiden Serotoninrezeptoren 5-HT1A und 5-HT7 konnte Heterodimerisierung molekular nachgewiesen werden, in ihren physiologischen Mechanismen und Effekten sollte daher eine Charakterisierung vorgenommen werden. Mittels elektrophysiologischer Messverfahren wurden Ströme an dem heterologen Expressionsmodell der Oozyten des Krallenfrosches Xenopus laevis mittels Voltage-Clamp Technik an Kaliumionenkanälen (Kir3 und TASK-1) gemessen. Hierbei konnte gezeigt werden, dass die heterodimere Koexpression beider Rezeptoren eine signifikante Reduktion des Rezeptor-aktivierten Kanalstroms im Vergleich zur homomeren Expression zur Folge hatte. Weitere Experimente konnten dann zeigen, dass diese Effekte spezifisch für dieses Rezeptorheterodimer sind, und dass die Effekte von der Dosis bzw. dem Verhältnis der exprimierten cRNA abhängen. In Fluoreszenzmessung konnte zudem gezeigt werden, dass die Reduktion der Stromamplitude in der heterodimeren Expression nicht auf eine Reduktion von Kanalproteinen in der Zellmembran zurückzuführen ist. Zur weiteren Charakterisierung des bisher erst in Ansätzen erforschten 5-HT7 Rezeptors wurde dieser abschließend mit einem ß- adrenergen Rezeptor verglichen, der über den gleichen Signalweg bzw. Ionenkanal funktioniert. Auch hier zeigte sich eine signifikante Reduktion des Kanalstroms beim 5-HT7 Rezeptor. Die physiologische Relevanz dieser Ergebnisse liegt darin begründet, dass ein weiterführendes Verständnis von 5-HT Rezeptor vermittelten Signalwegen, insbesondere von der Bedeutung und den Mechanismen ihrer Heterodimersierung, neue pathophysiologische Zusammenhänge verdeutlicht. Speziell im Hinblick auf Erkrankungen, die mit den 5-HT Rezeptoren assoziiert sind, wie etwa Depressionen und Angststörungen, soll sich hieraus die Möglichkeit spezifischerer Therapien ergeben. / Heteromerisation of G-protein coupled receptors (GPCR)is a current object of research to find out diversity of signaling pathways. The functional details of those constructs in vivo are not yet understood, also molecular mechanisms. For the Serotonin receptors 1A and 7 heteromerisation recently could be shown, therefore intention now is to make a physiological characterization. By electrophysiological methods, i.e. voltage clamp, currents of potassium channels (Kir3 and TASK-1) could be detected using the heterologous expression system of oocytes of xenopus leavis. So we could demonstrate, that heterologous expression of both receptors leads to a reduced current amplitude in comparison to homologous expression of one receptor. Those effects where shown to be specific and dependend of cRNA dose. By using fluorescense tagged Kir-channel we could demonstrate that the effect doesn't base on less channel protein in cell surface of the oocytes. Another point of interest was the characterization of Serotonin-7 channel. Therefore we analyzed a dose-response-relationship, afterwards we compared data with a ß-adrenergic receptore in heteromeric expression with Serotonin-1A. The physiological relevance of those experiments is to understand serotonin pathways an metabolism that is very important in development of mental disorders of fear or major depression.
8

Gβγ acts at an inter-subunit cleft to activate GIRK1 channels

Mahajan, Rahul 09 October 2012 (has links)
Heterotrimeric guanine nucleotide-binding proteins (G-proteins) consist of an alpha subunit (Gα) and the dimeric beta-gamma subunit (Gβγ). The first example of direct cell signaling by Gβγ was the discovery of its role in activating G-protein regulated inwardly rectifying K+ (GIRK) channels which underlie the acetylcholine-induced K+ current responsible for vagal inhibition of heart rate. Published crystal structures have provided important insights into the structures of the G-protein subunits and GIRK channels separately, but co-crystals of the channel and Gβγ together remain elusive and no specific reciprocal residue interactions between the two proteins are currently known. Given the absence of direct structural evidence, we attempted to identify these functionally important channel-Gβγ interactions using a computational approach. We developed a multistage computational docking algorithm that combines several known methods in protein-protein docking. Application of the docking protocol to previously published structures of Gβγ and GIRK1 homomeric channels produced a clear signal of a favored binding mode. Analysis of this binding mode suggested a mechanism by which Gβγ promotes the open state of the channel. The channel-Gβγ interactions predicted by the model in silico could be disrupted in vitro by mutation of one protein and rescued by additional mutation of reciprocal residues in the other protein. These interactions were found to extend to agonist induced activation of the channels as well as to activation of the native heteromeric channels. Currently, the structural mechanism by which Gβγ regulates the functional conformations of GIRK channels or of any of its membrane-associated effector proteins is not known. This work shows the first evidence for specific reciprocal interactions between Gβγ and a GIRK channel and places these interactions in the context of a general model of intracellular regulation of GIRK gating.
9

Hydrogen Sulfide Regulation of Kir Channels

Ha, Junghoon 01 January 2017 (has links)
Inwardly rectifying potassium (Kir) channels establish and regulate the resting membrane potential of excitable cells in the heart, brain and other peripheral tissues. Phosphatidylinositol- 4,5-bisphosphate (PIP2) is a key direct activator of ion channels, including Kir channels. Gasotransmitters, such as carbon monoxide (CO), have been reported to regulate the activity of Kir channels by altering channel-PIP2 interactions. We tested, in a model system, the effects and mechanism of action of another important gasotransmitter, hydrogen sulfide (H2S) thought to play a key role in cellular responses under ischemic conditions. Direct administration of sodium hydrogen sulfide (NaHS), as an exogenous H2S source, and expression of cystathionine γ-lyase (CSE), a key enzyme that produces endogenous H2S in specific brain tissues, resulted in comparable current inhibition of several Kir2 and Kir3 channels. A “tag switch” assay provided biochemical evidence for sulfhydration of Kir3.2 channels. The extent of H2S regulation depended on the strength of channel-PIP2 interactions: H2S regulation was attenuated when strengthening channel-PIP2 interactions and was increased when channel-PIP2 interactions were weakened by depleting PIP2 levels via different manipulations. These H2S effects took place through specific cytoplasmic cysteine residues in Kir3.2 channels, where atomic resolution structures with PIP2 gives us insight as to how they may alter channel-PIP2 interactions. Mutation of these residues abolished H2S inhibition, and reintroduction of specific cysteine residues into the background of the mutant lacking cytoplasmic cysteine residues, rescued H2S inhibition. Molecular dynamics simulation experiments provided mechanistic insights as to how sulfhydration of specific cysteine residues could lead to changes in channel-PIP2 interactions and channel gating.

Page generated in 0.0295 seconds