• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementation of Real-Time Software Receiver for Gps or Glonass L1 Signals

Peng, Senlin 11 March 2010 (has links)
A 12 channel real-time GPS L1 C/A-code software receiver has been implemented on a Desktop with 1.84GHz Intel CPU. The software receiver has the capability to acquire new satellites coming in, keep tracking of satellites in view and give a user solution accuracy of 30 meters. This study also explores a real-time correlator for the GLONASS L1 signals. This software receiver is going to be used for scientific research and education. This work is a part of the ongoing effort to develop a low-cost, flexible, and capable GNSS receiver for use as a scientific instrument and for GNSS receiver technology development. The software receiver developed here makes use of a reconfigurable RF front end called the Universal Software Radio Peripheral (USRP) with a maximum real sampling frequency of 8MHz of complex samples. The USRP uses interchangeable daughter boards to down-convert and digitize RF signals in the range of DC to 2.9GHz, where each daughterboard covers an overlapping subset of this range. This RF front end was chosen for its flexibility and ease of use. The output of the RF front end is 8-bit complex I/Q samples output via a USB cable. The software receiver processing of the RF front-end outputs is accomplished by using bit-wise parallelism, as described in References [1] and [2]. In order to process the incoming RF data in this manner, the 8-bit complex I/Q samples are quantized to two bits. This is performed in the software receiver prior to signal correlation. In-phase and quadrature accumulations are computed using bit-wise parallel techniques, and these accumulations are used to drive code tracking delay-lock loops (DLLs) and carrier tracking phase-lock loops(PLLs). The computation of accumulations and the implementation of DLLs and PLLs for the GNSS ranging signals are detailed in the thesis. The software receiver is developed by C++. It consists of two parts: the software receiver core program and a simple interface. The current software receiver runs under Ubuntu Linux systems, but it is convenient to implement on other Linux systems. The software prerequisites for the software receiver are GNUradio and QT4.0. GNUradio is an open source program which provides the driver for the USRP board. The current version used by the software receiver is GNUradio-3.1.3. The user interface program is developed by using the classes provided by QT4.0. The hardware of the whole system consists of computer with intel 1.84 GHz CPU and 2GHz RAM, GPS and GLONASS antenna, USRP, and analogue signal generator. One problem with the USRP is that its on-board oscillator is not particularly stable in terms of frequency and phase. One solution to this problem is to use a high-quality external oscillator. An Agilent N5181A MXG Analog Signal Generator configured to output a 64MHz signal has been used as an external input clock to the USRP. This oscillator has a stated frequency error of 1 ppm/yr, has decent short-term frequency stability, and has a reasonably low phase noise at 64MHz. The outputs of the USRP board are 8 bits complex data with 4MHz sampling frequency with an intermediate frequency of zero. The input data are re-quantized and pack into 32-bit of integers. The total CPU usage of the software receiver is about 30 ~ 40% of the 1.84GHz CPU. The software receiver is started with a FFT based acquisition. The acquisition results are then used to initialize the receiver. The background search of satellites is accomplished by a serial search of PRN code replicas. The novelty of the the software receiver developed in this study is as follows: first, a reconfigurable RF front end is used which makes the software receiver extendable.Second, The software is developed with C++ in the general Linux system; This will make the software receiver easy to maintain and update. Third, the current software receiver also explores the process of GLONASS L1 signals with bit-wise parallel correlation. / Master of Science
2

Satellitengestützte Fahrzeuglokalisierung in urbanen Gebieten mit GPS und GLONASS

Reisdorf, Pierre 03 July 2012 (has links)
Navigationssysteme sollen nach Möglichkeit an jedem Ort und zu jeder Zeit funktionieren. Satellitennavigationssysteme unterliegen jedoch gewissen äußerlichen Einschränkungen, die die Positionierung erschweren oder erheblich verschlechtern. In einem urbanen Gebiet sind die Einflüsse auf die Positionierung mit Satellitensystemen durch die eingeschränkten räumlichen Verhältnisse besonders groß. Sowohl Mehrwege-Effekte wie auch die Verkleinerung des Sichtbereiches zu den Satelliten treten deutlich mehr auf. Mit der Verwendung von mehreren Satellitensystemen soll versucht werden, die Positionierung im urbanen Gebiet zu verbessern oder überhaupt erst möglich zu machen. Zur Untersuchung werden dafür die Eigenschaften Verfügbarkeit, Genauigkeit und Integrität für GPS, für GLONASS und für beide Systeme als ein Gesamtsystem genauer betrachtet.
3

Análise da integração GPS/GLONASS para posicionamento sob efeito de cintilação ionosférica / Analysis of GPS/GLONASS integration for positioning under ionospheric scintillation effect

Jerez, Gabriel Oliveira [UNESP] 17 March 2017 (has links)
Submitted by Gabriel Oliveira Jerez null (gabrielojerez@gmail.com) on 2017-04-14T21:10:24Z No. of bitstreams: 1 Dissertação_Gabriel.pdf: 58918950 bytes, checksum: c672d2677b4cddee82e8492deec6b6f9 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-04-18T14:47:18Z (GMT) No. of bitstreams: 1 jerez_go_me_prud.pdf: 58918950 bytes, checksum: c672d2677b4cddee82e8492deec6b6f9 (MD5) / Made available in DSpace on 2017-04-18T14:47:18Z (GMT). No. of bitstreams: 1 jerez_go_me_prud.pdf: 58918950 bytes, checksum: c672d2677b4cddee82e8492deec6b6f9 (MD5) Previous issue date: 2017-03-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Com o desenvolvimento dos sistemas globais de navegação por satélite as atividades que envolvem posicionamento passaram por uma revolução. Os pioneiros, GLONASS (GLObal NAvigation Satellite System) e GPS (Global Positioning System), são atualmente os principais sistemas, e únicos com constelação completa. A utilização combinada de dados GPS e GLONASS passou por uma perda de interesse no final da década de noventa devido à rápida degradação que o GLONASS sofreu. Porém, em 2001 teve início um plano de restabelecimento do sistema que em 2011 voltou a contar com constelação completa de 24 satélites e cobertura global. O GLONASS passa ainda por um processo de modernização, com novas gerações de satélites sendo desenvolvidas, refinamentos dos sistemas de tempo e referência e novas estações de controle sendo instaladas. Além do uso de dados combinados, outros fatores que influenciam a qualidade do posicionamento são os métodos empregados e os erros aos quais os sinais transmitidos estão sujeitos. Nas metodologias de integração devem constar as diferenças de estrutura dos sistemas, sendo as principais, para este caso, os sistemas de referência, sistemas de tempo e a tecnologia relacionada às frequências. Em relação aos erros, a ionosfera é uma importante fonte, principalmente para usuários de receptores de apenas uma frequência. Ela exige atenção especial, pois além de degradar a acurácia do posicionamento há uma grande dependência entre perdas do sinal e irregularidades ionosféricas, como a cintilação ionosférica. Na presente pesquisa buscou-se analisar as melhorias apresentadas no posicionamento utilizando dados combinados GPS/GLONASS sob efeito de cintilação ionosférica, avaliar a influência da cintilação nos sinais GLONASS e realizar um estudo da estrutura do sistema. Foram realizados três experimentos, relacionados à aplicação do PPP (Posicionamento por Ponto Preciso), do posicionamento relativo estático e do posicionamento em redes (especificamente no conceito de VRS – Virtual Reference Station). Para possibilitar o posicionamento em redes foi adaptada a ferramenta VRS-UNESP, para permitir a geração de bases virtuais com dados GLONASS ou GPS/GLONASS. Para as três metodologias foram selecionadas estações em três regiões do Brasil com comportamentos ionosféricos distintos visando possibilitar também a análise do efeito da cintilação. Para isso foram escolhidas regiões próximas ao equador geomagnético, próximas a área afetada pelo efeito fonte e ao sul do país, onde se tem menor influência da ionosfera. Para o PPP considerando-se todos os casos, independente da configuração, houve melhoria em 92,28% dos dias com o uso de dados GPS e GLONASS. Para o posicionamento relativo os resultados obtidos foram mais irregulares que para o PPP, sendo que a melhoria ocorreu em 69,18% dos casos. Os dados virtuais foram processados de maneira análoga ao experimento com PPP, obtendo melhoria em 100% os casos analisados ao se utilizar dados GPS e GLONASS. / With the development of the Global Navigation Satellite Systems (GNSS) the activities involving positioning passed by a great revolution. Currently, the pioneers, GLONASS (GLObal NAvigation Satellite System) and GPS (Global Positioning System), are the main systems with full constellation. The interest in the combined use of GPS and GLONASS data had a great fall in the late nineties due to the fast degradation of GLONASS. However, in 2001 a restoration plan of the system began and in 2011 GLONASS recovered the full constellation of 24 satellites with global coverage. Furthermore GLONASS is going through a modernization process, with the development of new satellite generations, time and reference systems refinements and new control stations. Besides the use of combined data, other factors that influence the positioning quality are the applied methods and the errors that can affect the transmitted signals. The integration methodologies must consider the differences in the systems structures, the main differences, for this case, are reference and time systems and the technology related to the frequencies. About the errors, the ionosphere is an important source, mainly for users of single frequency receivers. It requires special attention, because besides of degrading the positioning accuracy there is a great dependency between the loss of signal and ionospheric irregularities, as ionospheric scintillation. In this research it was intended to analyze the improvement of the combined use of GPS/GLONASS data at positioning under ionospheric scintillation effect, evaluate the influence of scintillation at GLONASS signals and perform a study about the structure of the system. Three experiments were performed, the first one is related to the application of PPP (Precise Point Positioning), the second one is about static relative positioning and the third one is about network based positioning (specifically in the Virtual Reference Station concept).To enable the network based positioning the software VRS-UNESP was adapted, in order to allow the generation of virtual stations with GLONASS or GPS/GLONASS data. In the three methodologies were selected three regions of Brazil with distinct ionospheric behavior, in order to evaluate the scintillation effect in the positioning. It was selected regions near to the geomagnetic equator, regions near the fountain effect and in the south of the country, where the ionosphere effect is less intense. For the PPP, considering all the configurations adopted, there was improvement with the use of GPS and GLONASS combined data in 92,28% of the days analyzed. For the relative positioning the results obtained were more irregulars than the ones from PPP. In such case it was achieved improvement in 69,18% of the cases with the use of combined data. The virtual data were processed in a procedure similar to the one used in the PPP experiment. It was achieved improvement in 100% of the cases that were used GPS and GLONASS data.

Page generated in 0.0138 seconds