Spelling suggestions: "subject:"denied avigation"" "subject:"denied aavigation""
1 |
Modeling, Parameter Estimation, and Navigation of Indoor Quadrotor RobotsQuebe, Stephen C. 29 April 2013 (has links) (PDF)
This thesis discusses topics relevant to indoor unmanned quadrotor navigation and control. These topics include: quadrotor modeling, sensor modeling, quadrotor parameter estimation, sensor calibration, quadrotor state estimation using onboard sensors, and cooperative GPS navigation. Modeling the quadrotor, sensor modeling, and parameter estimation are essential components for quadrotor navigation and control. This thesis investigates prior work and organizes a wide variety of models and calibration methods that enable indoor unmanned quadrotor flight. Quadrotor parameter estimation using a particle filter is a contribution that extends current research in the area. This contribution is novel in that it applies the particle filter specifically to quadrotor parameter estimation as opposed to quadrotor state estimation. The advantages and disadvantages of such an approach are explained. Quadrotor state estimation using onboard sensors and without the aid of GPS is also discussed, as well as quadrotor pose estimation using the Extended Kalman Filter with an inertial measurement unit and simulated 3D camera updates. This is done using two measurement updates: one from the inertial measurement unit and one from the simulated 3D camera. Finally, we demonstrate that when GPS lock cannot be obtained by an unmanned vehicle individually. A group of cooperative robots with pose estimates to one anther can exploit partial GPS information to improve global position estimates for individuals in the group. This method is advantageous for robots that need to navigate in environments where signals from GPS satellites are partially obscured or jammed.
|
2 |
UAV Navigation and Radar OdometryQuist, Eric Blaine 01 March 2015 (has links) (PDF)
Prior to the wide deployment of robotic systems, they must be able to navigate autonomously. These systems cannot rely on good weather or daytime navigation and they must also be able to navigate in unknown environments. All of this must take place without human interaction. A majority of modern autonomous systems rely on GPS for position estimation. While GPS solutions are readily available, GPS is often lost and may even be jammed. To this end, a significant amount of research has focused on GPS-denied navigation. Many GPS-denied solutions rely on known environmental features for navigation. Others use vision sensors, which often perform poorly at high altitudes and are limited in poor weather. In contrast, radar systems accurately measure range at high and low altitudes. Additionally, these systems remain unaffected by inclimate weather. This dissertation develops the use of radar odometry for GPS-denied navigation. Using the range progression of unknown environmental features, the aircraft's motion is estimated. Results are presented for both simulated and real radar data. In Chapter 2 a greedy radar odometry algorithm is presented. It uses the Hough transform to identify the range progression of ground point-scatterers. A global nearest neighbor approach is implemented to perform data association. Assuming a piece-wise constant heading assumption, as the aircraft passes pairs of scatterers, the location of the scatterers are triangulated, and the motion of the aircraft is estimated. Real flight data is used to validate the approach. Simulated flight data explores the robustness of the approach when the heading assumption is violated. Chapter 3 explores a more robust radar odometry technique, where the relatively constant heading assumption is removed. This chapter uses the recursive-random sample consensus (R-RANSAC) Algorithm to identify, associate, and track the point scatterers. Using the measured ranges to the tracked scatterers, an extended Kalman filter (EKF) iteratively estimates the aircraft's position in addition to the relative locations of each reflector. Real flight data is used to validate the accuracy of this approach. Chapter 4 performs observability analysis of a range-only sensor. An observable, radar odometry approach is proposed. It improves the previous approaches by adding a more robust R-RANSAC above ground level (AGL) tracking algorithm to further improve the navigational accuracy. Real flight results are presented, comparing this approach to the techniques presented in previous chapters.
|
3 |
Goal-Aware Robocentric Mapping and Navigation of a Quadrotor Unmanned Aerial VehicleBiswas, Srijanee 18 June 2019 (has links)
No description available.
|
4 |
Cooperative Navigation of Autonomous Vehicles in Challenging EnvironmentsForsgren, Brendon Peter 18 September 2023 (has links) (PDF)
As the capabilities of autonomous systems have increased so has interest in utilizing teams of autonomous systems to accomplish tasks more efficiently. This dissertation takes steps toward enabling the cooperation of unmanned systems in scenarios that are challenging, such as GPS-denied or perceptually aliased environments. This work begins by developing a cooperative navigation framework that is scalable in the number of agents, robust against communication latency or dropout, and requires little a priori information. Additionally, this framework is designed to be easily adopted by existing single-agent systems with minimal changes to existing software and software architectures. All systems in the framework are validated through Monte Carlo simulations. The second part of this dissertation focuses on making cooperative navigation robust in challenging environments. This work first focuses on enabling a more robust version of pose graph SLAM, called cycle-based pose graph optimization, to be run in real-time by implementing and validating an algorithm to incrementally approximate a minimum cycle basis. A new algorithm is proposed that is tailored to multi-agent systems by approximating the cycle basis of two graphs that have been joined. These algorithms are validated through extensive simulation and hardware experiments. The last part of this dissertation focuses on scenarios where perceptual aliasing and incorrect or unknown data association are present. This work presents a unification of the framework of consistency maximization, and extends the concept of pairwise consistency to group consistency. This work shows that by using group consistency, low-degree-of-freedom measurements can be rejected in high-outlier regimes if the measurements do not fit the distribution of other measurements. The efficacy of this method is verified extensively using both simulation and hardware experiments.
|
5 |
Beyond LiDAR for Unmanned Aerial Event-Based Localization in GPS Denied EnvironmentsMayalu Jr, Alfred Kulua 23 June 2021 (has links)
Finding lost persons, collecting information in disturbed communities, efficiently traversing urban areas after a blast or similar catastrophic events have motivated researchers to develop intelligent sensor frameworks to aid law enforcement, first responders, and military personnel with situational awareness. This dissertation consists of a two-part framework for providing situational awareness using both acoustic ground sensors and aerial sensing modalities. Ground sensors in the field of data-driven detection and classification approaches typically rely on computationally expensive inputs such as image or video-based methods [6, 91]. However, the information given by an acoustic signal offers several advantages, such as low computational needs and possible classification of occluded events including gunshots or explosions. Once an event is identified, responding to real-time events in urban areas is difficult using an Unmanned Aerial Vehicle (UAV) especially when GPS is unreliable due to coverage blackouts and/or GPS degradation [10].
Furthermore, if it is possible to deploy multiple in-situ static intelligent acoustic autonomous sensors that can identify anomalous sounds given context, then the sensors can communicate with an autonomous UAV that can navigate in a GPS-denied urban environment for investigation of the event; this could offer several advantages for time-critical and precise, localized response information necessary for life-saving decision-making.
Thus, in order to implement a complete intelligent sensor framework, the need for both an intelligent static ground acoustic autonomous unattended sensors (AAUS) and improvements to GPS-degraded localization has become apparent for applications such as anomaly detection, public safety, as well as intelligence surveillance and reconnaissance (ISR) operations. Distributed AAUS networks could provide end-users with near real-time actionable information for large urban environments with limited resources. Complete ISR mission profiles require a UAV to fly in GPS challenging or denied environments such as natural or urban canyons, at least in a part of a mission.
This dissertation addresses, 1) the development of intelligent sensor framework through the development of a static ground AAUS capable of machine learning for audio feature classification and 2) GPS impaired localization through a formal framework for trajectory-based flight navigation for unmanned aircraft systems (UAS) operating BVLOS in low-altitude urban airspace. Our AAUS sensor method utilizes monophonic sound event detection in which the sensor detects, records, and classifies each event utilizing supervised machine learning techniques [90]. We propose a simulated framework to enhance the performance of localization in GPS-denied environments. We do this by using a new representation of 3D geospatial data using planar features that efficiently capture the amount of information required for sensor-based GPS navigation in obstacle-rich environments. The results from this dissertation would impact both military and civilian areas of research with the ability to react to events and navigate in an urban environment. / Doctor of Philosophy / Emergency scenarios such as missing persons or catastrophic events in urban areas require first responders to gain situational awareness motivating researchers to investigate intelligent sensor frameworks that utilize drones for observation prompting questions such as: How can responders detect and classify acoustic anomalies using unattended sensors? and How do they remotely navigate in GPS-denied urban environments using drones to potentially investigate such an event?
This dissertation addresses the first question through the development of intelligent WSN systems that can provide time-critical and precise, localized environmental information necessary for decision-making. At Virginia Tech, we have developed a static ground Acoustic Autonomous Unattended Sensor (AAUS) capable of machine learning for audio feature classification. The prior arts of intelligent AAUS and network architectures do not account for network failure, jamming capabilities, or remote scenarios in which cellular data wifi coverage are unavailable [78, 90]. Lacking a framework for such scenarios illuminates vulnerability in operational integrity for proposed solutions in homeland security applications. We address this through data ferrying, a communication method in which a mobile node, such as a drone, physically carries data as it moves through the environment to communicate with other sensor nodes on the ground. When examining the second question of navigation/investigation, concerns of safety arise in urban areas regarding drones due to GPS signal loss which is one of the first problems that can occur when a drone flies into a city (such as New York City). If this happens, potential crashes, injury and damage to property are imminent because the drone does not know where it is in space. In these GPS-denied situations traditional methods use point clouds (a set of data points in space (X,Y,Z) representing a 3D object [107]) constructed from laser radar scanners (often seen in a Microsoft Xbox Kinect sensor) to find itself. The main drawback from using methods such as these is the accumulation of error and computational complexity of large data-sets such as New York City. An advantage of cities is that they are largely flat; thus, if you can represent a building with a plane instead of 10,000 points, you can greatly reduce your data and improve algorithm performance.
This dissertation addresses both the needs of an intelligent sensor framework through the development of a static ground AAUS capable of machine learning for audio feature classification as well as GPS-impaired localization through a formal framework for trajectory-based flight navigation for UAS operating BVLOS in low altitude urban and suburban environments.
|
6 |
GPS-Denied Localization of Landing eVTOL AircraftBrown, Aaron C. 16 April 2024 (has links) (PDF)
This thesis presents a dedicated GPS-denied landing system designed for electric vertical takeoff and landing (eVTOL) aircraft. The system employs active fiducial light pattern localization (AFLPL), which provides highly accurate and reliable navigation during critical landing phases. AFLPL utilizes images of a constellation comprised of modulating infrared lights strategically positioned on the landing site, to determine the aircraft pose through the use of a perspective-n-point (PnP) solver. The AFLPL system underwent thorough development, enhancement, and implementation to address and demonstrate its potential in navigation and its inherent limitations. A proposed method addresses the limitations of AFLPL by using an extended Kalman filter (EKF) to fuse PnP camera pose estimates with sensor measurements from an inertial measurement unit (IMU), attitude heading reference system (AHRS), and optional global positioning system (GPS). The EKF estimation is reported to significantly enhance the accuracy, reliability, and update frequency of the aircraft state estimation. To refine and validate the AFLPL and EKF algorithms, a simulation was developed, consisting of an eVTOL executing a glideslope landing trajectory. Furthermore, a hardware system consisting of a multirotor and infrared light ground units was implemented to test these methods under real-world conditions. This research culminated in the successful demonstration of the AFLPL-based estimation system's efficacy through an autonomous, GPS-denied landing flight test, affirming its potential to improve the navigation and control of eVTOL aircraft lacking access to GPS information.
|
7 |
An Autonomous Small Satellite Navigation System for Earth, Cislunar Space, and BeyondOmar Fathi Awad (15352846) 27 April 2023 (has links)
<p dir="ltr">The Global Navigation Satellite System (GNSS) is heavily relied on for the navigation of Earth satellites. For satellites in cislunar space and beyond, GNSS is not readily available. As a result, other sources such as NASA's Deep Space Network (DSN) must be relied on for navigation. However, DSN is overburdened and can only support a small number of satellites at a time. Furthermore, communication with external sources can become interrupted or deprived in these environments. Given NASA's current efforts towards cislunar space operations and the expected increase in cislunar satellite traffic, there will be a need for more autonomous navigation options in cislunar space and beyond.</p><p dir="ltr">In this thesis, a navigation system capable of accurate and computationally efficient orbit determination in these communication-deprived environments is proposed and investigated. The emphasis on computational efficiency is in support of cubesats which are constrained in size, cost, and mass; this makes navigation even more challenging when resources such as GNSS signals or ground station tracking become unavailable.</p><p dir="ltr">The proposed navigation system, which is called GRAVNAV in this thesis, involves a two-satellite formation orbiting a planet. The primary satellite hosts an Extended Kalman Filter (EKF) and is capable of measuring the relative position of the secondary satellite; accurate attitude estimates are also available to the primary satellite. The relative position measurements allow the EKF to estimate the absolute position and velocity of both satellites. In this thesis, the proposed navigation system is investigated in the two-body and three-body problems.</p><p dir="ltr">The two-body analysis illuminates the effect of the gravity model error on orbit determination performance. High-fidelity gravity models can be computationally expensive for cubesats; however, celestial bodies such as the Earth and Moon have non-uniform and highly-irregular gravity fields that require complex models to describe the motion of satellites orbiting in their gravity field. Initial results show that when a second-order zonal harmonic gravity model is used, the orbit determination accuracy is poor at low altitudes due to large gravity model errors while high-altitude orbits yield good accuracy due to small gravity model errors. To remedy the poor performance for low-altitude orbits, a Gravity Model Error Compensation (GMEC) technique is proposed and investigated. Along with a special tuning model developed specifically for GRAVNAV, this technique is demonstrated to work well for various geocentric and lunar orbits.</p><p><br></p><p dir="ltr">In addition to the gravity model error, other variables affecting the state estimation accuracy are also explored in the two-body analysis. These variables include the six Keplerian orbital elements, measurement accuracy, intersatellite range, and satellite formation shape. The GRAVNAV analysis shows that a smaller intersatellite range results in increased state estimation error. Despite the intersatellite range bounds, semimajor axis, measurement model, and measurement errors being identical for both orbits, the satellite formation shape also has a strong influence on orbit determination accuracy. Formations that place both satellites in different orbits significantly outperform those that place both satellites in the same orbit.</p><p dir="ltr">The three-body analysis primarily focuses on characterizing the unique behavior of GRAVNAV in Near Rectilinear Halo Orbits (NRHOs). Like the two-body analysis, the effect of the satellite formation shape is also characterized and shown to have a similar impact on the orbit determination performance. Unlike the two-body problem, however, different orbits possess different stability properties which are shown to significantly affect orbit determination performance. The more stable NRHOs yield better GRAVNAV performance and are also less sensitive to factors that negatively impact performance such as measurement error, process noise, and decreased intersatellite range.</p><p dir="ltr">Overall, the analyses in this thesis show that GRAVNAV yields accurate and computationally efficient orbit determination when GMEC is used. This, along with the independence of GRAVNAV from GNSS signals and ground-station tracking, shows that GRAVNAV has good potential for navigation in cislunar space and beyond.</p>
|
Page generated in 0.0759 seconds