• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 192
  • 85
  • 82
  • 74
  • 28
  • 9
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 521
  • 119
  • 119
  • 106
  • 97
  • 90
  • 85
  • 77
  • 50
  • 50
  • 50
  • 48
  • 44
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Changes in properties of vineyard red brown earths under long - term drip irrigation, combined with varying water qualities and gypsum application rates

Clark, Louise Jayne January 2004 (has links)
Irrigation water of poor quality can have deleterious effects on soils. However, the effect of drip irrigation on seasonal and long term (e.g. over 50 years) changes in soil chemical properties is poorly understood, complicated by the two-dimensional water flow patterns beneath drippers. Field and laboratory experiments were conducted, along with computer modelling, to evaluate morphological and physio-chemical changes in a typical Barossa Valley Red Brown Earth (Palexeralf, Chromosol or Lixisol) when drip irrigated under various changing management practices. This work focused on the following two management changes : (i) switching from long-term irrigation with a saline source to less saline water and (ii) gypsum (CaSO₄) application. A literature review (Chapter 1) focuses on the distribution, features, properties and management of Red Brown Earths in the premium viticultural regions of the Barossa Valley and McLaren Vale, South Australia. The effects of irrigation method and water quality on the rate and extent of soil deterioration are emphasised. The review also discusses the irrigation of grapes (Vitis vinifera) and summarises previous research into the effect of sodicity and salinity on grape and wine characteristics. This chapter shows the importance of Red Brown Earths to Australian viticulture, but highlights their susceptibility to chemical and physical degradation. Degradation may be prevented or remediated by increasing organic matter levels, applying gypsum, modifying cropping and through tillage practices such as deep ripping. Chapter 2 provides general information on the two study sites investigated, one in the Barossa Valley and the other at McLaren Vale. Local climate, geology, geomorphology and soils are described. Chapter 3 details laboratory, field and sampling methods used to elucidate changes in soil chemical and physical properties following irrigation. The genesis of the non-irrigated Red Brown Earth in the Barossa Valley is described in Chapter 4, and is inferred from geochemical, soil chemical, layer silicate and carbonate mineralogical data. Elemental gain and loss calculations showed 42% of original parent material mass was lost during the formation of A and A2 horizons, while the Bt1 and Bt2 horizons gained 50% of original parent material mass. This is consistent with substrate weathering and illuviation of clay from surface to lower horizons. The depth distributions of all major elements were similar ; the A horizon contained lower amounts of major elements than the remainder of the profile, indicating this region was intensely weathered. This chapter also compares the non-irrigated site to the adjacent irrigated site (separated by 10 m) to determine if the sites are pedogenically identical and geochemical changes from irrigation. Many of the differences between the non-irrigated and irrigated sites appear to be correlated with variations in quartz, clay, Fe oxide and carbonate contents, with little geological variation between the sample sites. In Chapter 5 morphological, chemical and physical properties of a non-irrigated and irrigated Red Brown Earth in the Barossa Valley are compared. Alternating applications of saline irrigation water (in summer) and non-saline rain water (in winter) have caused an increase in electrical conductivity (EC [subscript se]), sodium adsorption ratio (SAR), bulk density (ρ b) and pH. This has resulted in enhanced clay dispersion and migration. Impacts on SAR and ρ b are more pronounced at points away from the dripper due to the presence of an argillic horizon, which has greatly influenced the variations in these soil properties with depth and distance from the dripper. Dispersion and migration of clay were promoted by alternating levels of EC, while SAR remained relatively constant, resulting in the formation of a less permeable layer in the Bt1 horizon. Clay dispersion (breakdown of micro-aggregate structure) was inferred from reduced numbers of pores and voids, alterations in colouring (an indication that iron has changed oxidation state) and increased bulk density (up to 30 %). Eleven years of irrigation changed the soil from a Calcic Palexeralf (non-irrigated) to an Aquic Natrixeralf (irrigated) (Soil Survey Staff, 1999). These results, combined with data from Chapter 4, were used to develop a mechanistic model of soil changes with irrigation. Chapters 6, 7 and 8 describe field experiments conducted in the Barossa Valley and McLaren Vale regions. This data shows seasonal and spatial variations in soil saturation extract properties ( EC [subscript se], SAR [subscript se], Na [subscipt se] and Ca [subscript se] ). At the Barossa Valley site (Chapter 6) non-irrigated soils had low EC [subscript se], SAR [subscript se], Na [subscript se] and Ca [subscript se] values throughout the sampling period. The irrigated treatments included eleven years of drip irrigation with saline water (2.5 dS / m) and also gypsum application at 0, 4 or 8 tonnes/hectare in 2001 and 2002. Salts in the profile increased with gypsum application rate, with high levels occurring midwinter 2002 prior to rainfall leaching salts. SAR has declined with gypsum application, particularly in the A horizon and at 100 cm from the dripper in the Bt1 horizon ; this has the potential to reflocculate clay particles and improve soil hydraulic conductivity. Chapter 7 presents further results from the Barossa Valley site, this treatment had been irrigated for 9 years with saline water (2.5 dS / m) prior to switching to a less saline water source (0.5 dS / m). The soil also received gypsum at 0, 4 or 8 tonnes / hectare in 2001 and 2002. It was found that the first few years are critical when switching to a less saline water source. EC declines rapidly, but SAR requires a number of years, depending on conditions, to decline, resulting in a period during which the Bt1 horizon may become dispersed. Gypsum application increased the EC [subscipt se] but not to the EC [subscript se] levels of soil irrigated with saline water. Chapter 8 examines soil chemical properties of a McLaren Vale vineyard, irrigated with moderately saline water (1.2 dS / m) since 1987 and treated with gypsum every second year since establishment. This practice prevented the SAR (< 8) rising and a large zone of the soil profile (20 to 100 cm from dripper) has a high calcium level (> 5 mmol / L). However, irrigation caused the leaching of calcium beneath the dripper in both the A and B horizons (0 to 20 cm from dripper) (< 4 mmol / L). Chapters 9 and 10 interpret and discuss results from continuous monitoring of redox potential (Eh) and soil solution composition in the Barossa Valley vineyard, irrigated with saline or non-saline water, and gypsum-treated at 0 and 4 tonnes / hectare. Soil pore water solution (Chapter 9) collected by suction cups is compared to results obtained in chapters 6 and 7. The soil has extended zones and times of high SAR and low EC. This was particularly evident in the upper B horizon, where the SAR of the soil remained stable throughout the year while the EC was more seasonally variable with EC declining during the winter months. The A horizon does not appear to be as susceptible to clay dispersion (compared to the B horizon) because during periods of low EC the SAR also declines, which may be due to the low CEC (low clay and organic matter content) of this horizon. Chapter 10 presents redox potentials (Eh) measured using platinum redox electrodes installed in the A, A2 and Bt1 horizons to examine whether Eh of the profile varies with irrigation water quality and gypsum application. Saline irrigation water caused the B horizon to become waterlogged in winter months, while less saline irrigation water caused a perched watertable to develop, due to a dispersed Bt1 horizon. Application of gypsum reduced the soil Eh particularly in the A2 horizon (+ 500 to + 50 mV) during winter. Thus redox potential can be influenced by irrigation water quality and gypsum applications. Chapter 11 incorporated site data from the Barossa Valley non-irrigated site into a predictive mathematical model, TRANSMIT, a 2D version of LEACHM. This model was used to predict zones of gypsum accumulation during long-term irrigation (67 years). When applied over the entire soil surface, gypsum accumulated at 60 to 90 cm from the dripper in the B horizon; higher application rates caused increased accumulation. When applied immediately beneath the irrigation dripper, gypsum accumulated in a 'column' under the dripper (at 0 to 35 cm radius from the dripper), with very little movement away from the dripper. Also, the zone of accumulation of salts from high and low salinity irrigation water was investigated. These regions were found to be similar, although concentrations were significantly lower with low salinity water. In low rainfall years salts accumulated throughout the B horizon (35 - 150 cm), while in periods of high rainfall (and leaching) the A, A2 and Bt1 horizons (0 - 60 cm) were leached, although at greater depths (80 - 150 cm) salt concentrations remained high. Chapter 12 summarises results and provides an understanding of soil processes in drip irrigated soils to underpin improved management options for viticulture. This study combines results from redox and soil solution monitoring, mineralogy, elemental gains and losses, and seasonal soil sampling to develop a mechanistic model of soil processes, which was combined with computer modelling to predict future properties of the soil. Major conclusions and recommendations of this study include : - Application of saline irrigation water to soil then ameliorated with gypsum - The first application of gypsum was leached by the subsequent irrigation from extended regions of the soil. As Na continues to enter the system via irrigation water, gypsum needs to be regularly applied. Otherwise calcium will be leached through the soil and SAR increases. - Application of non-saline irrigation water to soil then ameliorated with gypsum - The soil was found to only require one application at 8 tons / ha as this reduced SAR sufficiently. As less salt is entering the soil, subsequent gypsum applications can be at a lower rate or less frequently than required for saline irrigation water. - Gypsum applied directly beneath the dripper systems distributes calcium to a narrow region of the soil, while large regions of the soil require amelioration (high SAR) and are not receiving calcium. Therefore, gypsum application through the drip system or only beneath the dripper should be combined with broad acre application. - A range of methods to sample vineyards is recommended for duplex soils, including the use of saturation extracts, sampling time, sampling location (distance from dripper) and depth of sampling. This work is critical for vineyard management and may be applicable to other Australian viticulture regions with Red Brown Earths. / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2004.
172

Grapevine root growth in relation to water uptake from soil

Mapfumo, Emmanuel. January 1994 (has links) (PDF)
Copies of author's previously published articles inserted. Bibliography: leaves 150-166.
173

Biosynthesis and translocation of secondary metabolite glycosides in the grapevine Vitis vinifera L.

Gholami, Mansour. January 1996 (has links) (PDF)
Copies of author's previously published articles inserted. Bibliography: leaves 121-144. This study investigates the site of biosynthesis of flavour compounds in the grapevine. Most of the secondary metabolites, including flavour compounds, are glycosylated and stored in plant tissues as glycosides. The chemical properties of these compounds, especially their water solubility, suggests that glycosides might be forms of translocated secondary metabolites in plants.
174

The absorption, translocation and accumulation of 32P labelled systematic insecticides in grape-vines, with particular reference to their use for the control of Phylloxera vitifoliae Fitch

Coombe, B. G. (Bryan George) January 1956 (has links) (PDF)
Spine title: Systemic insecticides in grape vines. Typescript (copy). Includes bibliographical references (leaf. 82-84).
175

Evolution, pollination biology, and biogeography of the grape relative Leea (Leeaceae, vitales)

Molina, Jeanmaire E. January 2009 (has links)
Thesis (Ph. D.)--Rutgers University, 2009. / "Graduate Program in Ecology and Evolution." Includes bibliographical references (p. 95-107).
176

Development of anthocyanins and proanthocyanidins in Pinot noir grapes and their extraction into wine

Pastor del Rio, Jose L. 09 July 2004 (has links)
Color stability and mouth feel quality are two of the most important aspects of red wine quality. Anthocyanins and proanthocyanidins are responsible for these attributes and it has been shown that weather conditions during the growing season and grape maturity can effect these components in wine. However, investigations into proanthocyanidin development are for the most part incomplete. Although it is known that weather affects vine metabolism, it has not clearly understood how phenolics are affected by temperature and heat summation. It is generally believed that the wines made with riper grapes improve in flavor and mouth feel as a result of an "improvement" in skin tannin "ripeness". The idea of "tannin ripeness" is usually used in the wine industry to explain this phenomenon, however, no scientific explanation for this concept has been given. The objective of this project was threefold: I) Monitor phenolic development in Pinot noir grapes over three consecutive growing seasons and determine how anthocyanin and proanthocyanidin development in grapes was affected by heat summation, II) investigate the transfer of grape phenolics into wine during fermentation and maceration and III) understand how grape maturity affected wine composition with a specific focus on proanthocyanidin structure. In this study, anthocyanin and proanthocyanidin development in Vitis vinifera L. cv. Pinot noir grapes (Pommard clone) were monitored for three consecutive vintages (2001-2003). Five cluster samples (x5 replicates) were collected for analysis each week beginning approximately 4 weeks prior to veraison and continued through commercial harvest. Weather information (temperature and heat summation) showed that the growing seasons became increasingly warmer from 2001 to 2003. By harvest time, 2003 had the highest concentration of proanthocyanidins in seeds (per berry weight) in comparison with the other two vintages. Similarly, proanthocyanidins in skins had the highest concentration in 2003 (per berry weight). However, there was not difference in the concentration of flavan-3-ol monomers in seeds (per berry weight) between the three vintages. Anthocyanins were not significantly different over the three vintages. There was some relationship between the concentration of some proanthocyanidin components in grape seeds and fresh seed weight. Information of grape and wine phenolics was compared with each year's temperature. The results suggested that changes in temperature and heat summation between vintages are associated with changes in proanthocyanidin content in grapes and wine. The data indicates that it is possible to predict proanthocyanidins in wine based upon early grape analysis. However, the anthocyanin content in grapes did not correlate with either weather or the anthocyanin content in wine. The concentration of seed and skin proanthocyanidins in grapes were compared with the proportions of seed and skin proanthocyanidins found in wine. Based upon proanthocyanidin extraction from seeds and skin during winemaking, a formula to predict proanthocyanidin content in wine based upon grape analysis at harvest and veraison was developed. From this formula, Pinot noir wine contained 7.8% of the proanthocyanidins from seed and 19% of the proanthocyanidins from skin analyzed from grapes at harvest, and 3.6% of the seed proanthocyanidin and 9.7% of the skin proanthocyanidin present in grapes analyzed at veraison. Based upon the analyses of this study, coupled with several informal sensory studies conducted on wine, the results of this thesis do not support the notion that "tannin ripeness" is due to structural changes in proanthocyanidin that occur during fruit ripening. Furthermore, this thesis suggests that "tannin ripeness" is not due to differential extraction of seed and skin proanthocyanidins as a result of fruit ripening. / Graduation date: 2005
177

Biosynthesis and translocation of secondary metabolite glycosides in the grapevine Vitis vinifera L. / by Mansour Gholami.

Gholami, Mansour January 1996 (has links)
Copies of author's previously published articles inserted. / Bibliography: leaves 121-144. / xiii, 150 leaves : ill. (chiefly col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / This study investigates the site of biosynthesis of flavour compounds in the grapevine. Most of the secondary metabolites, including flavour compounds, are glycosylated and stored in plant tissues as glycosides. The chemical properties of these compounds, especially their water solubility, suggests that glycosides might be forms of translocated secondary metabolites in plants. / Thesis (Ph.D.)--University of Adelaide, Dept. of Horticulture, Viticulture and Oenology, 1996?
178

Black Aspergillus species: implications for ochratoxin A in Australian grapes and wine.

Leong, Su-lin L. January 2005 (has links)
Ochratoxin A (OA), a nephrotoxin and potential carcinogen, has been found in many foods, including grapes and grape products. Limits of 2 μg/kg in wine and 10 μg/kg in dried vine fruit have been introduced by the European Union. This study presents information on the ecology of ochratoxin A production by black Aspergillus spp. in Australian vineyards, and the passage of the toxin throughout winemaking. Aspergillus niger and A. carbonarius were isolated from vineyard soils in 17 of 17, and four of 17 Australian viticultural regions, respectively. A. aculeatus was isolated infrequently. All thirty-two isolates of A. carbonarius and three of 100 isolates of A. niger produced OA. Of Australian A. niger isolates analysed for restriction fragment length polymorphisms within the internal transcribed spacer region of 5.8S ribosomal DNA, 61 of 113 isolates, including the three toxigenic isolates, were of type N pattern, and 52 were type T. A selection of these A. carbonarius and A. niger aggregate isolates, as well as imported isolates, were compared using enterobacterial repetitive intergenic consensus (ERIC)-PCR, amplified fragment length polymorphisms (AFLP) and microsatellite markers. ERIC and AFLP clearly differentiated A. niger from A.carbonarius. AFLP further divided A. niger into types N and T. Six polymorphic microsatellite markers, developed specifically for A. niger, also differentiated strains into N and T types. There was no clear relationship between genotypic distribution and ochratoxigenicity, substrate or geographic origin. The survival of A. carbonarius spores on filter membranes was examined at water activities (aw) 0.4-1.0, and at 1 °C, 15 °C, 25 °C and 37 °C. Survival generally increased at lower temperatures. The lowest water activity, 0.4, best supported the survival of spores, but 0.6- 0.9 aw was often deleterious. Complex interactions between temperature and water activity were observed. Viability of A. carbonarius spores on filter membranes decreased ca 10[superscript 5] fold upon exposure to sunlight, equivalent to 10 mWh of cumulative ultraviolet irradiation at 290-400 nm. Growth and toxin production were examined for five isolates of A. carbonarius and two of A. niger on solid medium simulating juice at early veraison, within the range 0.98-0.92 aw, and at 15 °C, 25 °C, 30 °C and 35 °C. Maximum growth for A. carbonarius and A. niger occurred at ca 0.965 aw / 30 °C and ca 0.98 aw / 35 °C, respectively. The optimum temperature for OA production was 15 °C and little was produced above 25 °C. The optimum aw for toxin production was 0.95 for A. niger and 0.95-0.98 for A. carbonarius. Toxin was produced in young colonies, however, levels were reduced as colonies aged. Black Aspergillus spp. were more commonly isolated from the surface than from the pulp of berries, and increased with berry maturity, or damage. A. niger was isolated more frequently than A. carbonarius and A. aculeatus. Populations of A. carbonarius inoculated onto bunches of Chardonnay and Shiraz decreased from pre-bunch closure to early veraison. Populations from veraison to harvest were variable, and ncreased in bunches with tight clustering and splitting. In a trial with Semillon bunches, omitting fungicide sprays after flowering did not increase the development of Aspergillus rot. Inoculation of bunches with A. carbonarius spore suspension did not necessarily result in Aspergillus bunch rot. In vitro trials suggested that the severity of rot was mediated primarily by the degree of berry damage, followed by the extent of spore coverage. No clear trends regarding cultivar susceptibility were observed. For Semillon bunches inoculated with A. carbonarius spores with and without berry puncture, increased susceptibility to rot and OA formation was associated with berry damage, in particular at greater than 12.3 °Brix (20 d before harvest). OA contamination of bunches was related to the number of mouldy berries per bunch, with shrivelled, severely mouldy berries the primary source of OA. Puncture-inoculation of white grapes (Chardonnay and Semillon) and red grapes (Shiraz) on the vine with A. carbonarius resulted in berries containing OA. Inoculated grapes displayed greater total soluble solids due to berry shrivelling, and greater titratable acidity due to production of citric acid by the fungus. Samples taken throughout vinification of these grapes were analysed for OA. Pressing resulted in the greatest reduction in OA (68-85% decrease in concentration, compared with that of crushed grapes). Additional reductions occurred at racking from grape and gross lees, and after storage. OA was removed by binding to marc, grape and gross lees. Pectolytic enzyme treatment of white must, bentonite juice fining, recovery of juice or wine from lees, and static or rotary style fermentation of red must, had no effect on OA contamination. Bentonite in white wine (containing 56 mg/L grape-derived proteins) and yeast hulls in red wine were effective fining agents for removing OA. Findings from these studies may contribute to the improvement of strategies to minimise OA in Australian wine and dried vine fruit. / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture and Wine, 2005.
179

Changes in properties of vineyard red brown earths under long - term drip irrigation, combined with varying water qualities and gypsum application rates

Clark, Louise Jayne January 2004 (has links)
Irrigation water of poor quality can have deleterious effects on soils. However, the effect of drip irrigation on seasonal and long term (e.g. over 50 years) changes in soil chemical properties is poorly understood, complicated by the two-dimensional water flow patterns beneath drippers. Field and laboratory experiments were conducted, along with computer modelling, to evaluate morphological and physio-chemical changes in a typical Barossa Valley Red Brown Earth (Palexeralf, Chromosol or Lixisol) when drip irrigated under various changing management practices. This work focused on the following two management changes : (i) switching from long-term irrigation with a saline source to less saline water and (ii) gypsum (CaSO₄) application. A literature review (Chapter 1) focuses on the distribution, features, properties and management of Red Brown Earths in the premium viticultural regions of the Barossa Valley and McLaren Vale, South Australia. The effects of irrigation method and water quality on the rate and extent of soil deterioration are emphasised. The review also discusses the irrigation of grapes (Vitis vinifera) and summarises previous research into the effect of sodicity and salinity on grape and wine characteristics. This chapter shows the importance of Red Brown Earths to Australian viticulture, but highlights their susceptibility to chemical and physical degradation. Degradation may be prevented or remediated by increasing organic matter levels, applying gypsum, modifying cropping and through tillage practices such as deep ripping. Chapter 2 provides general information on the two study sites investigated, one in the Barossa Valley and the other at McLaren Vale. Local climate, geology, geomorphology and soils are described. Chapter 3 details laboratory, field and sampling methods used to elucidate changes in soil chemical and physical properties following irrigation. The genesis of the non-irrigated Red Brown Earth in the Barossa Valley is described in Chapter 4, and is inferred from geochemical, soil chemical, layer silicate and carbonate mineralogical data. Elemental gain and loss calculations showed 42% of original parent material mass was lost during the formation of A and A2 horizons, while the Bt1 and Bt2 horizons gained 50% of original parent material mass. This is consistent with substrate weathering and illuviation of clay from surface to lower horizons. The depth distributions of all major elements were similar ; the A horizon contained lower amounts of major elements than the remainder of the profile, indicating this region was intensely weathered. This chapter also compares the non-irrigated site to the adjacent irrigated site (separated by 10 m) to determine if the sites are pedogenically identical and geochemical changes from irrigation. Many of the differences between the non-irrigated and irrigated sites appear to be correlated with variations in quartz, clay, Fe oxide and carbonate contents, with little geological variation between the sample sites. In Chapter 5 morphological, chemical and physical properties of a non-irrigated and irrigated Red Brown Earth in the Barossa Valley are compared. Alternating applications of saline irrigation water (in summer) and non-saline rain water (in winter) have caused an increase in electrical conductivity (EC [subscript se]), sodium adsorption ratio (SAR), bulk density (ρ b) and pH. This has resulted in enhanced clay dispersion and migration. Impacts on SAR and ρ b are more pronounced at points away from the dripper due to the presence of an argillic horizon, which has greatly influenced the variations in these soil properties with depth and distance from the dripper. Dispersion and migration of clay were promoted by alternating levels of EC, while SAR remained relatively constant, resulting in the formation of a less permeable layer in the Bt1 horizon. Clay dispersion (breakdown of micro-aggregate structure) was inferred from reduced numbers of pores and voids, alterations in colouring (an indication that iron has changed oxidation state) and increased bulk density (up to 30 %). Eleven years of irrigation changed the soil from a Calcic Palexeralf (non-irrigated) to an Aquic Natrixeralf (irrigated) (Soil Survey Staff, 1999). These results, combined with data from Chapter 4, were used to develop a mechanistic model of soil changes with irrigation. Chapters 6, 7 and 8 describe field experiments conducted in the Barossa Valley and McLaren Vale regions. This data shows seasonal and spatial variations in soil saturation extract properties ( EC [subscript se], SAR [subscript se], Na [subscipt se] and Ca [subscript se] ). At the Barossa Valley site (Chapter 6) non-irrigated soils had low EC [subscript se], SAR [subscript se], Na [subscript se] and Ca [subscript se] values throughout the sampling period. The irrigated treatments included eleven years of drip irrigation with saline water (2.5 dS / m) and also gypsum application at 0, 4 or 8 tonnes/hectare in 2001 and 2002. Salts in the profile increased with gypsum application rate, with high levels occurring midwinter 2002 prior to rainfall leaching salts. SAR has declined with gypsum application, particularly in the A horizon and at 100 cm from the dripper in the Bt1 horizon ; this has the potential to reflocculate clay particles and improve soil hydraulic conductivity. Chapter 7 presents further results from the Barossa Valley site, this treatment had been irrigated for 9 years with saline water (2.5 dS / m) prior to switching to a less saline water source (0.5 dS / m). The soil also received gypsum at 0, 4 or 8 tonnes / hectare in 2001 and 2002. It was found that the first few years are critical when switching to a less saline water source. EC declines rapidly, but SAR requires a number of years, depending on conditions, to decline, resulting in a period during which the Bt1 horizon may become dispersed. Gypsum application increased the EC [subscipt se] but not to the EC [subscript se] levels of soil irrigated with saline water. Chapter 8 examines soil chemical properties of a McLaren Vale vineyard, irrigated with moderately saline water (1.2 dS / m) since 1987 and treated with gypsum every second year since establishment. This practice prevented the SAR (< 8) rising and a large zone of the soil profile (20 to 100 cm from dripper) has a high calcium level (> 5 mmol / L). However, irrigation caused the leaching of calcium beneath the dripper in both the A and B horizons (0 to 20 cm from dripper) (< 4 mmol / L). Chapters 9 and 10 interpret and discuss results from continuous monitoring of redox potential (Eh) and soil solution composition in the Barossa Valley vineyard, irrigated with saline or non-saline water, and gypsum-treated at 0 and 4 tonnes / hectare. Soil pore water solution (Chapter 9) collected by suction cups is compared to results obtained in chapters 6 and 7. The soil has extended zones and times of high SAR and low EC. This was particularly evident in the upper B horizon, where the SAR of the soil remained stable throughout the year while the EC was more seasonally variable with EC declining during the winter months. The A horizon does not appear to be as susceptible to clay dispersion (compared to the B horizon) because during periods of low EC the SAR also declines, which may be due to the low CEC (low clay and organic matter content) of this horizon. Chapter 10 presents redox potentials (Eh) measured using platinum redox electrodes installed in the A, A2 and Bt1 horizons to examine whether Eh of the profile varies with irrigation water quality and gypsum application. Saline irrigation water caused the B horizon to become waterlogged in winter months, while less saline irrigation water caused a perched watertable to develop, due to a dispersed Bt1 horizon. Application of gypsum reduced the soil Eh particularly in the A2 horizon (+ 500 to + 50 mV) during winter. Thus redox potential can be influenced by irrigation water quality and gypsum applications. Chapter 11 incorporated site data from the Barossa Valley non-irrigated site into a predictive mathematical model, TRANSMIT, a 2D version of LEACHM. This model was used to predict zones of gypsum accumulation during long-term irrigation (67 years). When applied over the entire soil surface, gypsum accumulated at 60 to 90 cm from the dripper in the B horizon; higher application rates caused increased accumulation. When applied immediately beneath the irrigation dripper, gypsum accumulated in a 'column' under the dripper (at 0 to 35 cm radius from the dripper), with very little movement away from the dripper. Also, the zone of accumulation of salts from high and low salinity irrigation water was investigated. These regions were found to be similar, although concentrations were significantly lower with low salinity water. In low rainfall years salts accumulated throughout the B horizon (35 - 150 cm), while in periods of high rainfall (and leaching) the A, A2 and Bt1 horizons (0 - 60 cm) were leached, although at greater depths (80 - 150 cm) salt concentrations remained high. Chapter 12 summarises results and provides an understanding of soil processes in drip irrigated soils to underpin improved management options for viticulture. This study combines results from redox and soil solution monitoring, mineralogy, elemental gains and losses, and seasonal soil sampling to develop a mechanistic model of soil processes, which was combined with computer modelling to predict future properties of the soil. Major conclusions and recommendations of this study include : - Application of saline irrigation water to soil then ameliorated with gypsum - The first application of gypsum was leached by the subsequent irrigation from extended regions of the soil. As Na continues to enter the system via irrigation water, gypsum needs to be regularly applied. Otherwise calcium will be leached through the soil and SAR increases. - Application of non-saline irrigation water to soil then ameliorated with gypsum - The soil was found to only require one application at 8 tons / ha as this reduced SAR sufficiently. As less salt is entering the soil, subsequent gypsum applications can be at a lower rate or less frequently than required for saline irrigation water. - Gypsum applied directly beneath the dripper systems distributes calcium to a narrow region of the soil, while large regions of the soil require amelioration (high SAR) and are not receiving calcium. Therefore, gypsum application through the drip system or only beneath the dripper should be combined with broad acre application. - A range of methods to sample vineyards is recommended for duplex soils, including the use of saturation extracts, sampling time, sampling location (distance from dripper) and depth of sampling. This work is critical for vineyard management and may be applicable to other Australian viticulture regions with Red Brown Earths. / Thesis (Ph.D.) -- University of Adelaide, School of Earth and Environmental Sciences, 2004.
180

A study of Glycosides in grapes and wines of Vitis vinifera cv. Shiraz / Patrick George Iland.

Iland, Patrick G. January 2001 (has links)
Includes a list of publications co-authored by the author during the preparation of this thesis. / Bibliography: leaves 103-111. / vi, 111 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Studies the links between grape composition, wine composition and wine sensory properties. Developed a new method of measuring glycoside concentration in grapes (glycosyl-glucose assay) and a modified measurement of wine colour density in red wine. These were used to analyse samples of Shiraz grapes and wines from a comprehensive vineyard irrigation trial. Glycosyl-glucose concentrations shows promise for the prediction of wine composition and flavor intensity. / Thesis (Ph.D.)--University of Adelaide, Dept. of Horticulture, Viticulture and Oenology, 2001

Page generated in 0.0313 seconds