• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 7
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

GSK-3 Inhibition: A Novel Approach to Sensitization of Chemo-resistant Pancreatic Cancer Cells

Mamaghani, Shadi 31 August 2011 (has links)
The aggressive nature of pancreatic cancer, characterized by invasiveness, resistance to treatment, rapid progression, and its high prevalence in the population urges the need for developing more effective treatments. Many studies have attributed resistance to therapeutics of pancreatic cancer to activity of the transcription factor nuclear factor kappa B (NF-kB). NF-kB is regulated by the serine/threonine kinase glycogen synthase kinase-3 (GSK-3). GSK-3 is a key mediator of pathways such as insulin, wnt, and PI3K/Akt and has roles in proliferation, glucose metabolism, apoptosis, motility and neuroprotection. Depending on the cellular context, GSK-3 activity can promote or inhibit cell survival. GSK-3 inhibition was recently reported to have anti-cancer effects against pancreatic cancer cells. This effect was in part attributed to suppression of NF-kB. In this thesis, I showed that while blocking GSK-3 disrupts NF-kB, and has anti-survival effects on pancreatic cancer cells, it does not sensitize to the chemotherapeutic drug gemcitabine. NF-kB inhibition by curcumin also resulted in similar effects. These results questions previous reports that NF-kB activation plays a major role in chemo-resistance of pancreatic cancer. The inhibition of NF-kB by genetic disruption of GSK-3 was previously reported to sensitize mouse embryonic fibroblasts and hepatocytes to TNF-alpha cytotoxicity. I therefore tested whether GSK-3 inhibition could sensitize pancreatic cancer cells to apoptosis induced by the clinically applicable member of the TNF-alpha family, TNF-alpha related apoptosis inducing ligand (TRAIL). In contrast to the results obtained with gemcitabine, the combination of genetic or pharmacological inhibition of GSK-3 and TRAIL was found to be highly synergistic in apoptosis induction. Analysis of the apoptotic mechanisms, point towards effects of GSK-3 inhibition on caspase-8 activation, consistent with inhibition of the death receptor signalling pathway. It was found that not only caspase-8 but also mitochondrial anti-apoptotic proteins such as Bcl-XL and Mcl-1 were mediating the TRAIL sensitization. Furthermore, for the first time the in vivo effects of GSK-3 inhibition in combination with TRAIL treatment was investigated. The results indicate a significant enhancement of apoptosis in pancreatic cancer xenografts with minimal toxic effects. Together, these studies provide a rationale for developing combination treatments based on GSK3 inhibition and TRAIL death receptor activation to treat pancreatic cancer.
12

GSK-3 Inhibition: A Novel Approach to Sensitization of Chemo-resistant Pancreatic Cancer Cells

Mamaghani, Shadi 31 August 2011 (has links)
The aggressive nature of pancreatic cancer, characterized by invasiveness, resistance to treatment, rapid progression, and its high prevalence in the population urges the need for developing more effective treatments. Many studies have attributed resistance to therapeutics of pancreatic cancer to activity of the transcription factor nuclear factor kappa B (NF-kB). NF-kB is regulated by the serine/threonine kinase glycogen synthase kinase-3 (GSK-3). GSK-3 is a key mediator of pathways such as insulin, wnt, and PI3K/Akt and has roles in proliferation, glucose metabolism, apoptosis, motility and neuroprotection. Depending on the cellular context, GSK-3 activity can promote or inhibit cell survival. GSK-3 inhibition was recently reported to have anti-cancer effects against pancreatic cancer cells. This effect was in part attributed to suppression of NF-kB. In this thesis, I showed that while blocking GSK-3 disrupts NF-kB, and has anti-survival effects on pancreatic cancer cells, it does not sensitize to the chemotherapeutic drug gemcitabine. NF-kB inhibition by curcumin also resulted in similar effects. These results questions previous reports that NF-kB activation plays a major role in chemo-resistance of pancreatic cancer. The inhibition of NF-kB by genetic disruption of GSK-3 was previously reported to sensitize mouse embryonic fibroblasts and hepatocytes to TNF-alpha cytotoxicity. I therefore tested whether GSK-3 inhibition could sensitize pancreatic cancer cells to apoptosis induced by the clinically applicable member of the TNF-alpha family, TNF-alpha related apoptosis inducing ligand (TRAIL). In contrast to the results obtained with gemcitabine, the combination of genetic or pharmacological inhibition of GSK-3 and TRAIL was found to be highly synergistic in apoptosis induction. Analysis of the apoptotic mechanisms, point towards effects of GSK-3 inhibition on caspase-8 activation, consistent with inhibition of the death receptor signalling pathway. It was found that not only caspase-8 but also mitochondrial anti-apoptotic proteins such as Bcl-XL and Mcl-1 were mediating the TRAIL sensitization. Furthermore, for the first time the in vivo effects of GSK-3 inhibition in combination with TRAIL treatment was investigated. The results indicate a significant enhancement of apoptosis in pancreatic cancer xenografts with minimal toxic effects. Together, these studies provide a rationale for developing combination treatments based on GSK3 inhibition and TRAIL death receptor activation to treat pancreatic cancer.
13

Comparison of the photocytotoxic effects on undifferentiated and differentiated neuroblastoma cells

Chen, Huang-Yo 16 July 2012 (has links)
Neuroblastoma is one of the most aggressive cancers and has a complex form of differentiation. We hypothesized that the advanced cellular differentiation may alter the susceptibility of neuroblastoma to photodynamic therapy (PDT) and have a selective survival advantage. We compared the photocytotoxicity treated by Hematoporphyrin (Hp) for PDT on human neuroblastoma SH-SY5Y cells with retinoic acid (RA)-differentiated SH-SY5Y cells. The undifferentiated neuroblastoma cells were shown to cause elevated photocytotoxic effect by MTT assay and also confirmed by Annexin V-FITC/PI staining. In undifferentiated cells, Hp-PDT increased the generation of intracellular reactive oxygen species (ROS), the loss of mitochondrial membrane potential, characteristic chromatin condensation displaying, PARP cleavage, the downregulated expression of Bcl-2, and the activation of caspase-9, -3 was more significant than that of the differentiated cells. In undifferentiated SH-SY5Y cells, cell cycle arrest at G2/M phase was accompanied by the decrease in cyclin B1 level, and could be reversed by the disruption of intracellular ROS caused by PDT. Furthermore, the ROS scavenger markedly inhibited Hp-PDT induced activation of caspase-3, a sustained phosphorylation of Akt/GSK-3£] and ERK, and cytotoxicity in undifferentiated SH-SY5Y cells, but not in differentiated SH-SY5Y cells. Blockage of p38 and JNK activation can significantly attenuate PDT-induced viability loss in both SH-SY5Y cells, but the less significant activation of p38 and JNK, as well as more significant phosphorylation of Akt and GSK-3£], and a prolonged ERK activation appeared to make differentiated SH-SY5Y cells more resistant to photocytotoxicity. Collectively, these data suggested that differentiated SH-SY5Y cells were more resistant to PDT induced apoptosis than undifferentiated SH-SY5Y cells, and ROS played the most important regulatory role on the susceptibility to Hp-PDT between undifferentiated and differentiated neuroblastoma cells. These results may have important implications for neuroblastoma patients undergoing PDT.
14

Measuring molecular motor forces to probe transport regulation in vivo

Leidel, Christina Paulette 09 July 2013 (has links)
The cell relies on molecular motor proteins for long range transport of vesicles and organelles to maintain the organization required within the cell as it changes over time. Cargos move bidirectionally along microtubules due to the presence of multiple copies of opposite polarity motors. Individual motor properties have been teased out in vitro, but understanding how multiple motors cooperate in vivo has thus far been limited by many obstacles. The goal of this work is to study how multiple similar and dissimilar motors operate together in vivo. Since the function of motors is to generate force to haul cargos, I designed a novel optical trapping system capable of precisely measuring the forces exerted by molecular motors in their native environment, a living cell. Using this system, I find evidence that motors do not fight against each other, supporting the regulation model over the tug-of war model for bidirectional transport. I then study motor regulation in axons in the context of Alzheimer’s disease. I find that GSK-3, a kinase found in abnormal amounts in Alzheimer’s brains, is a negative regulator of transport. I show that GSK-3 regulates motor activity rather than cargo binding. Finally, I also use the optical trap to probe the viscosity of cytosol in vivo and investigate its implications on the cooperation of multiple motors. / text
15

Syntheses of quinolines as neural protective reagents and progress towards total synthesis of (+) - myriceric acid A

Lu, Jianyu January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Duy H. Hua / The first chapter of this dissertation introduces and discusses the syntheses of a series of substituted quinolines as glycogen synthase kinase-3[beta] (GSK-3[beta]) inhibitors. GSK-3[beta] is highly associated with Alzheimer’s disease (AD), and it is suggested that inhibition of this enzyme could alleviate the symptoms of AD. Total 16 novel substituted quinolines were designed and synthesized, and their bio-activities were evaluated on MC65 cell protection assay. Four of the most active compounds were selected to test their enzyme inhibitory activities on GSK-3[beta] and protein kinase C assays. Among these compounds, 4-{[6-methoxy-4-methyl-5-(3-(trifluoromethyl)phenoxy)quinolin-8-ylamino]methyl} phenol (1.5) shows the highest MC65 cell protection and GSK-3[beta] enzyme inhibitory activities and potential enzyme specificity. Structure-activity relationship (SAR) was built as well, and the binding mode was simulated via computational method to interpret the observed SAR. Although additional bio-evaluation is needed, compound 1.5 is a promising lead compound for the development of more active and less toxic drug for the conteraction of AD. The second chapter introduces the progress on the total synthesis of myriceric acid A. Myriceric acid A is a triterpene-type natural product which was isolated from the young twigs of Myrica cerifera. It is a non-peptide endotheline-1 (ET-1) receptor antagonist. The total synthesis of this natural product started from the stereoselective synthesis of bicyclic intermediate (R)-5,8a-dimethyl-3,4,8,8a-tetrahydronaphthalene-1,6(2H,7H)-dione [(-)-2.28]. Then a new method was developed to enatioselectively synthesize the tricyclic intermediate (4aR,8R,8aR)-8-(tertbutyldimethylsilyloxy)-1,4a,8a-trimethyl-4,4a,4b,5,6,7,8,8a,9,10-decahydro phenanthren-2(3H)-one [(+)-2.72] which used the synthesized optically-pure (4aR,5R)-5-(tertbutyldimethylsilyloxy)-1,4a-dimethyl-4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one [(-)-2.53] derived from (-)-2.28 and [alpha]-trimethylsilylvinyl ethyl ketone via a cascade reductive Michael addition – aldol condensation reaction. After functional group inter-conversion, the desired tricyclic intermediate (4a'S,8a'R)-1',1',4a',8a'-tetramethyldecahydro-1'H-spiro[[1,3]dioxolane-2,2'-phenanthren]-8'(3'H)-one [(-)-2.33] was synthesized. An intramolecular cascade Michael addition-aldol condensation reaction was designed to construct the triterpene-skeleton of myriceric acid A, and the desired starting material for this reaction was prepared with the trimethyl{(4a'R,8a'R)-1',1',4a',8a'-tetramethyl-3',4',4a',4b',5',6',8a',9',10',10a'-decahydro-1'Hspiro[(1,3)dioxolane-2,2'-phenanthrene]-8'-yloxy}silane [(-)-2.81] and 3,3-dimethyl-7-oxooctanal (2.46) via Mukaiyama aldol condensation reaction. The resulting pentacyclic compound was further transformed to the desired ester (6a'R,8a'R,12a'S,12b'R,14b'R)-ethyl 4',4',6a',11',11',14b'-hexamethyl-8'-oxo-2',4',4a',5',6',6a',8',8a',9',10',11',12',12a',12b',13',14',14a',14b'-octadecahydro-1'H-spiro[(1,3) dioxolane - 2, 3 '- picene]-8a'-carboxylate (-)-2.106. The further investigation on total synthesis of myriceric acid A will be pursued in future.
16

Puerarin attenuates locomotor and cognitive deficits as well as hippocampal neuronal injury through the PI3K/Akt1/GSK-3 beta signaling pathway in an in vivo model of cerebral ischemia

Tao, Jinhao, Cui, Yuehua, Duan, Yu, Zhang, Nan, Wang, Congmin, Zhang, Fayong 07 November 2017 (has links)
Ischemic stroke causes irreversible damage to the brain. The hippocampus is a vulnerable region and plays an important role in cognition and locomotor activity. Puerarin is a phytoestrogen that has beneficial effects in treating neurological disorders. How puerarin protects against hippocampal injury and its molecular mechanisms remain to be elucidated. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The rats were pretreated with puerarin alone or together with LY294002 (an PI3K inhibitor) before ischemia/ reperfusion (I/R). The open-and closed-field tasks and Morris water maze (MWM) test were used to assess the effects of puerarin on anxiety-like behavioral and cognitive impairment following I/R. Hematoxylin-eosin staining(HE) was used to examine the survival of hippocampal CA1 pyramidal neurons, and immunoblotting was performed to examine the expression of the related proteins. By using the rat model for transient I/R, we demonstrated that puerarin pretreatment significantly increased the travelling distance and number of crossings in the open-and closedfield tests, reduced latency and increased the proportion of distance and time in zone IV in the MWM. The number of live cells in the hippocampus is sharply increased by puerarin pretreatment. We further observed that the levels of phosphorylated Akt1, GSK-3 beta and MCL-1were elevated and those of cleaved-caspase-3 were reduced in the puerarin-treatment group. Notably, the PI3K inhibitor LY294002 counteracted all of the effects of puerarin. Our findings suggest that puerarin protects the hippocampus from I/R damage by activating the PI3K/Akt1/GSK-3 beta/MCL-1 signaling pathway.
17

Overexpressing Dominant Negative MyD88 Induces Cardiac Dysfunction in Transgenic Mice

Chen, Wei Q., Li, Chuan Fu, Jiang, Xuan, Ruan, Hai B., Qi, Xin, Liu, Li, Zhao, Qing S., Gao, Xiang 01 November 2010 (has links)
Myeloid differentiation protein-88 (MyD88) is a crucial adaptor protein in the innate immune response. A protective role for MyD88 in normal cardiac function has been proposed in a surgical hypertrophic model. To assess the in vivo role of MyD88 in cardiac remodeling, we generated transgenic mice with cardiac-restricted expression of a dominant negative mutant of MyD88 (dnMyD88). Surprisingly, dnMyD88 transgenic mice displayed characteristic features of heart failure; including heart weight increase, cardiomyocytes enlargement, interstitial fibrosis, and re-expression of "fetal" genes. Echocardiographic examination of dnMyD88 hearts revealed dilated chamber volume and reduced cardiac contractility. DnMyD88 mice died from heart failure before they were 7 months old, as shown by Kaplan-Meier analysis. Additionally, the heart failure phenotype of dnMyD88 mice was associated with abnormal activation of the Akt/GSK-3β signaling pathway. These data provide the first evidence that normal MyD88 signaling is crucial for maintaining the physiological function of the adult heart.
18

Effect of GSK-3β Knock Down on Chronic Myelogenous Leukemia Cell Response toIFN-γ Stimulation

Kauffman, Melissa R. 01 June 2020 (has links)
No description available.
19

Structure-Function Analysis of GSK-3 Isoforms

Buescher, Jessica L. 03 September 2010 (has links)
No description available.
20

Glycogen Synthase Kinase-3 Loss-Of-Function Studies in Mus musculus and Murine Embryonic Stem Cells

Popkie, Anthony P. 21 March 2011 (has links)
No description available.

Page generated in 0.0221 seconds