• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 16
  • 14
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 12
  • 9
  • 9
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Recombination and Screening of Putative Glucosyltransferase Clone 4 in Pichia pastoris

Loftis, Peri, McIntosh, Cecelia A. 12 August 2012 (has links)
Flavonoids are a group of plant secondary metabolites that are vital to the cell systems of plants. The intake of these chemicals is advantageous to animals for their antioxidant properties that affect the function of immune and inflammatory cells. The bitter taste of grapefruit (Citrus paradise) and other citrus species is caused by the accumulation of glycosylated flavonoids. Glucosyltransferases (GTs) are enzymes that add glucose moieties to a carbon or hydroxyl group of natural products. The function of a putative secondary product GT clone was tested. In previous research, putative GT 4 was cloned into a pCD1 modified pET expression system, heterologously expressed in E.coli, and screened for activity with only a few substrates, and little GT activity was found. Issues of protein localized to inclusion bodies in bacteria are being addressed. PGT 4 is being heterologously expressed in yeast (Pichia pastoris) to allow for protein production and analysis. PGT 4 will be screened for GT activity with different flavonoid subclass representatives and simple phenolics. PGT 4’s significant impact on the biochemical regulation of Citrus paradise will be elucidated with its characterization and determination of PGT 4’s structure and function.
12

Structure-Function Analysis of Grapefruit Glucosyltransferase Protein – Identification of Key Amino Acid Residues for its Rigid Substrate Specificity

Sathanantham, Preethi, Devaiah, Shiva K., McIntosh, Cecelia A. 09 April 2015 (has links)
Flavonoids are an important class of secondary metabolites widely distributed in plants. The majority of naturally occurring flavonoids are found in glucosylated form. Glucosyltransferases are enzymes that enable transfer of glucose from an activated donor (UDP-glucose) to the acceptor flavonoid substrates. A flavonol specific glucosyltransferase cloned from Citrus paradisi (Cp3OGT) has strict substrate and regiospecificity. In this study, amino acid residues that could potentially alter the rigidity observed in this enzyme were mutated to position equivalent residues of a putative anthocyanin specific glucosyltransferase from Clitorea ternatea and a GT from Vitis vinifera that can glucosylate both flavonols and anthocyanidins. Using homology modeling followed by site directed mutagenesis to identify candidate regions, three double mutations were made. To test the basis of substrate specificity, biochemical analysis of the three recombinant mutant proteins was carried out. Recombinant protein with mutation S20G+T21S revealed that the enzyme retained activity similar to the wildtype (Cp3OGT) (WT- Km app-104.8 µM; Vmax = 24.6 pmol/min/µg, Mutant- Km app-136.42 µM; Vmax -25pmol/min/µg) but the mutant was more thermostable compared to the WT. The (S290C+S319A) mutant protein retained 40% activity relative to wildtype and has an optimum pH shifted towards the acidic side (pH 6) (Km app-8.27 µM; Vmax-90.9 pmol/min/µg). Mutation of Glutamine87 and Histine154 (H154Y+Q87I) have rendered this recombinant protein inactive with every class of flavonoid tested. Interestingly, the single point mutations H154Y and Q871I had significant activity, slightly greater than that of wildtype enzyme. The two active recombinant proteins will further be analyzed to determine whether the mutations have altered regiospecificity of the original enzyme. Product identification is being conducted using HPLC.
13

Expression and Biochemical Characterization of Two Glucosyltransferases from Citrus paradisi

Devaiah, Shivakumar P., McIntosh, Cecelia A. 12 August 2012 (has links)
Glucosylation is a common alteration reaction in plant metabolism and is regularly associated with the production of secondary metabolites. Glucosylation serves a number of roles within metabolism including: stabilizing structures, affecting solubility, transport, and regulating the bioavailability of the compounds for other metabolic processes. The enzymes that lead to glucoside formation are known as glucosyltransferases (GTs), and characteristically accomplish this task by transferring a UDP-activated glucose to a corresponding acceptor molecule. GTs involved in secondary metabolism share a conserved 44 amino acid residue motif (60–80% identity) known as the plant secondary product glucosyltransferase (PSPG) box, which has been demonstrated to include the UDP-sugar binding moiety. Among the secondary metabolites, flavonoid glycosides and limonoid glycosides affect taste characteristics in citrus making the associated glucosyltransferases particularly interesting targets for biotechnology applications in these species. The research focus of our lab is to establish the function of putative secondary product glucosyltransferase clones identified from Citrus paradisi. In the present study, we report on the activity and biochemical characterization of two clones, PGT 7 (Flavonol-3-O-GT) and PGT8 (Limonoid GT) which were expressed in Pichia pastoris.
14

Structure and Functional Analysis of Glucosyltransferase from Citrus paradisi

Devaiah, Shivakumar P., Zhang, Cheng, McIntosh, Cecelia A. 02 April 2014 (has links)
Glucosyltransferases (GTs) are enzymes that expedite the incorporation of UDP-activated glucose to a corresponding acceptor molecule. This enzymatic reaction stabilizes structures and affects solubility, transport, and bioavailability of flavonoids for other metabolic processes. Flavonoid glycosides affect taste characteristics in citrus making the associated glucosyltransferases particularly interesting targets for biotechnology applications. Custom design of enzymes requires understanding of structure/function of the protein. The present study focuses on creating mutant flavonol-3-O-glucosyltransferase (F-3-O-GT) proteins using site-directed mutagenesis and testing the effect of each mutation on substrate specificity, regiospecificity and kinetic properties of the enzyme. Mutations were selected on the basis of sequence similarity between grapefruit F-3-O-GT, an uncharacterized GT gene in blood orange (98%), and grape F3GT (82%). Grapefruit F-3-O-GT prefers flavonol as a substrate whereas the blood orange sequence is annotated to be a flavonoid 3GT and the grape GTs could glucosylate both flavonols and anthocyanidins. Mutants of F-3-O-GT were generated by substituting L41M, N242K, E296K and N242K+E296K and proteins were expressed in Pichia pastoris using the pPICZA vector. Analysis of these mF-3-O-GTs showed that all of them preferred flavonols over flavanone, flavone, isoflavones, or anthocyanidin substrates and showed decrease in enzyme activity of 16 to 51% relative to the wild type F-3-O-GT.
15

Substrate Specificity and Kinetic Properties of Flavonol-3-O-Glucosyltransferase From Citrus Paradisi

Devaiah, Shivakumar P., McIntosh, Cecelia A. 04 August 2013 (has links)
Glucosyltransferases (GTs) are enzymes that expedite the incorporation of UDP-activated glucose to a corresponding acceptor molecule. This enzymatic reaction stabilizes structures and affects solubility, transport, and bioavailability of flavonoids for other metabolic processes. Flavonoid glycosides affect taste characteristics in citrus making the associated glucosyltransferases particularly interesting targets for biotechnology applications. Custom design of enzymes requires understanding of structure/function of the protein. The present study focuses on creating mutant flavonol-3-O-glucosyltransferase (F-3-O-GT) proteins using site directed mutagenesis and testing the effect of each mutation on substrate specificity, regiospecificity and kinetic properties of the enzyme. Mutations were selected on the basis of sequence similarity between grapefruit F-3- O-GT, an uncharacterized GT gene in blood orange (98%), and grape F3GT (82%). Grapefruit F-3-O-GT prefers flavonol as a substrate whereas the blood orange sequence is annotated to be a flavonoid 3GT and the grape GTs could glucosylate both flavonols and anthocyanidins. Mutants of F-3-O-GT were generated by substituting N242K, E296K and N242K+E296K and proteins were expressed in Pichia pastoris using the pPICZA vector. Analysis of these mF-3-O-GTs showed that all of them preferred flavonols over flavanone, flavone, isoflavones, or anthocyanidin substrates and showed decrease in enzyme activity of 16 to 51% relative to the wild type F-3- O-GT.
16

Investigating Potentially Key Residues Which Imparts the Substrate and Regiospecifi city of aFlavonol-Specifi c 3-O-Glucosyltransferase from Grapefruit

Adepoju, Olusegun A., Shivakumar, Devaiah P., McIntosh, Cecelia A. 09 August 2013 (has links)
Most naturally-occurring fl avonoids are found in glucosylated form. Glucosyltransferases (GTs) are enzymes that catalyze the transfer of glucose from a high energy sugar donor to an acceptor molecule. Citrus paradisi fl avonol-specifi c glucosyltransferase (Cp-F3-O-GT) is recognized for its rigid substrate and regiospecifi city. In this work, homology modeling, site-directed mutagenesis, and biochemical analyses of the recombinant mutant Cp-F3-O-GT proteins were used to investigate potential amino acid residues that might be responsible for the enzymes strict regiospecifi city while also investigating its substrate specifi city. The single point mutations of three amino acid residues within the grapefruit F3-O-GT identifi ed through sequence alignment and homology modeling were performed. Analyses of the enzyme activity of the recombinant mutant F3-O-GT proteins revealed that the single point mutations of serine 20 to leucine (S20L) and proline 297 to phenylalanine (P297F) rendered the recombinant enzymes inactive with fl avonol substrates at 6% and 12% respectively relative to wild-type. However, the mutation of glycine 392 to glutamate (G392E) remained active and glucosylated the fl avonol acceptors quercein (Km app= 11 μM; Vmax = 5.7 pKat/μg) relative to the wild-type (Km app= 93 μM; Vmax = 41.7 pKat/μg), and kaempferol (Km app= 7 μM; Vmax = 3.8 pKat/μg) relative to the wild-type (Km app = 39 μM; Vmax = 4.2 pKat/ μg). The mutant enzyme also did not show broadened acceptor substrate specifi city as it also favored fl avonols as the preferred acceptor substrate. The optimum pH of the mutant enzyme was 8.0 similar to the wild-type F3-O-GT. Activity of the mutant enzyme was stimulated by NaCl and KCl, but inhibited by Cu2+, Zn2+, Fe2+ as well as UDP with an apparent Ki of 10μM. Product identifi cation to determine glucosylation position is being investigated for a possible change in regiospecifi city.
17

Recombination and Screening of Putative Grapefruit Glucosyltransferase 4 in Pichia pastoris

Loftis, Peri, McIntosh, Cecelia A. 04 April 2013 (has links)
Flavonoids are a group of plant secondary metabolites that are vital to the cell systems of plants. The intake of these chemicals is advantageous to animals for their antioxidant properties that affect the function of immune and inflammatory cells. The bitter taste of grapefruit (Citrus paradisi) and other citrus species is caused by the accumulation of glycosylated flavonoids. Glucosyltransferases (GTs) are enzymes that add glucose moieties to a carbon or hydroxyl group of natural products. The function of a putative secondary product GT clone was tested. In previous research, putative GT 4 was cloned into a pCD1 modified pET expression system, heterologously expressed in E.coli, and screened for activity with a few substrates; little GT activity was found. Issues of protein localized to inclusion bodies in bacteria were addressed. PGT 4 is being heterologously expressed in yeast (Pichia pastoris) to allow for protein production and analysis. PGT 4 was screened for GT activity with different flavonoid subclass representatives and simple phenolics.
18

Determination of the Substrate Specificity of the Mutant D344P of Citrus paradisi Flavonol-Specific 3-O-Glucosyltransferase

Spaulding, Nathan, Devaiah, Shivakumar, McIntosh, Cecelia A. 12 April 2017 (has links)
Plants produce a vast array of secondary metabolites. The phenolic compounds flavonoids are metabolites ubiquitous among plants and are known to aid in processes such as plant reproduction, UV defense, pigmentation and development. In relation to human health, flavonoids have also been found to possess anti-inflammatory, anti-cancer, and anti-oxidant properties. Flavonoids ability to participate in so many interactions is due in part to their subclass variation and further chemical modification. One such modification is glucosylation, where a glucose molecule is added to the flavonoid substrate. The enzymes that catalyze these reactions are known as glucosyltransferases. Citrus paradisi contains a glucosyltransferase that is specific to the 3-O position of flavonols. To further understand the reactions it catalyzes, Cp3-O-GT structure was modeled against an anthocyanidin/flavonol 3 GT found in Vitis vinifera to identify candidate amino acids for mutations. Mutants were then created using site-directed mutagenesis, and one mutant, D344P, was constructed by an aspartate being replaced with a proline based off of the sequence comparison of the original enzymes. Biochemically characterizing the mutant D344P protein will determine whether the mutation has an effect on the substrate specificity of Cp3-O-GT. An initial quickscreening assay using radioactive UDP-glucose as a sugar donor suggested there may have been expansion of substrate acceptance. Confirming time course assays did not support this. Additionally, results of these assays show that D344P protein has decreased activity with flavonols as compared to wild type Cp3-O-GT. with no expansion of substrate specificity. Models suggest that a change in protein conformation has resulted in decreased activity.
19

Propositions pour un protocole déterministe de contrôle d'accès et de routage avec économie d'énergie dans les réseaux ZigBee

Francomme, Jackson 24 June 2008 (has links) (PDF)
Le développement des technologies de réseaux de capteurs incite les industries à envisager des alternatives réduisant les coûts et la complexité tout en améliorant la fiabilité. Parmi les solutions sans fil actuelles, la technologie LP-WPAN IEEE 802.15.4/ZigBee dispose des mécanismes et des garanties nécessaires pour une utilisation industrielle. Nous proposons des mécanismes de synchronisation entièrement déterministe permettant l'utilisation du standard IEEE 802.15.4 en mode balisé dans un réseau maillé, ainsi qu'une méthode de routage adaptative « AODV en » pour les messages transmis dans un réseau étendu. En premier lieu, nous analysons la technologie IEEE 802.15.4/ZigBee, plus particulièrement sa capacité à conserver son comportement déterministe et économe en énergie dans une architecture de réseau maillé. Cette étude met en évidence plusieurs insuffisances du standard. Notre contribution consiste à palier à ces manques par une synchronisation centralisée réactive aux changements de topologie, esquivant les collisions de balises et de GTS. Ces modifications seront apportées au niveau de la sous-couche MAC. En second lieu, aucun des protocoles de routage (couche 3 du modèle ISO) actuellement les plus utilisés, ne prennent en compte simultanément les critères indispensables au contexte des communications dans un environnement industriel à fortes contraintes sur la consommation et sur le temps. Nous proposons un mécanisme de routage réactif adaptatif recherchant les routes optimisant la durée de vie des noeuds du réseau contraints énergétiquement, et basé sur l'optimisation conjointe du délai et de la consommation. Pour cela, nous avons analysé et évalué la consommation de chacun des noeuds sans fil autonomes utilisant le standard. Nous avons ainsi proposé des informations de délai et de niveau de charge de la batterie de chacun des noeuds, prises en considération dans notre mécanisme de routage adaptatif. L'ensemble de nos propositions sont validées en utilisant diverses méthodes dont les réseaux de Petri temporisés, la simulation et le prototypage. Les résultats obtenus sont exposés à la suite de chacune de nos contributions.
20

Using Site-Directed Mutagenesis to Determine Impact of Amino Acid Substitution on Substrate and Regiospecificity of Grapefruit Flavonol 3-O-Glucosyltransferase

Adepoju, Olusegun A., Shiva, Devaiah K., McIntosh, Cecelia A. 03 April 2014 (has links)
Flavonoids are secondary metabolites that are important in plant defense, protection and human health. Most naturally-occurring flavonoids are found in glucosylated form. Glucosyltransferases (GTs) are enzymes that catalyze the transfer of glucose from a high energy sugar donor to an acceptor molecule. A flavonol-specific 3-O-GT enzyme has been identified and cloned from leaf tissues of grapefruit. The enzyme shows rigid substrate specificity and regiospecificity. F3-O-GTs from grape (Vitis vinifera) and grapefruit (Citrus paradisi) were modeled against F7-O-GTs from Crocus sativus and Scrutellaria biacalensis, and several non-conservative amino acid differences were identified that may impact regioselectivity. This research is designed to test the hypothesis that specific amino acid residues impart the regiospecificity of the grapefruit enzyme. Site-directed mutagenesis was performed on three potentially key amino acid residues within the grapefruit F3-O-GT that were identified through homology modeling. Analyses of the enzyme activity of the mutant F3-O-GT proteins revealed that the single point mutations of serine 20 to leucine (S20L) and proline 297 to phenylalanine (P297F) rendered the recombinant enzyme inactive with flavonol substrates. Mutation of glycine 392 to glutamate (G392E) was active at 80% relative to the wild type. The mutant enzyme also did not show broadened acceptor specificity as it also favored flavonols as the preferred acceptor substrate. The glucosylation products of the active mutant enzyme will be analyzed to determine if this resulted in a change in regiospecificity.

Page generated in 0.0334 seconds