• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isolierung und Charakterisierung der gamma-Tocopherolmeth yltransferase / Isolation and Characterization of the Gamma-To copherolmethyltransferase

Koch, Maria 31 October 2001 (has links)
No description available.
2

Substrate Specificity and Kinetic Properties of Flavonol-3-O-Glucosyltransferase From Citrus Paradisi

Devaiah, Shivakumar P., McIntosh, Cecelia A. 04 August 2013 (has links)
Glucosyltransferases (GTs) are enzymes that expedite the incorporation of UDP-activated glucose to a corresponding acceptor molecule. This enzymatic reaction stabilizes structures and affects solubility, transport, and bioavailability of flavonoids for other metabolic processes. Flavonoid glycosides affect taste characteristics in citrus making the associated glucosyltransferases particularly interesting targets for biotechnology applications. Custom design of enzymes requires understanding of structure/function of the protein. The present study focuses on creating mutant flavonol-3-O-glucosyltransferase (F-3-O-GT) proteins using site directed mutagenesis and testing the effect of each mutation on substrate specificity, regiospecificity and kinetic properties of the enzyme. Mutations were selected on the basis of sequence similarity between grapefruit F-3- O-GT, an uncharacterized GT gene in blood orange (98%), and grape F3GT (82%). Grapefruit F-3-O-GT prefers flavonol as a substrate whereas the blood orange sequence is annotated to be a flavonoid 3GT and the grape GTs could glucosylate both flavonols and anthocyanidins. Mutants of F-3-O-GT were generated by substituting N242K, E296K and N242K+E296K and proteins were expressed in Pichia pastoris using the pPICZA vector. Analysis of these mF-3-O-GTs showed that all of them preferred flavonols over flavanone, flavone, isoflavones, or anthocyanidin substrates and showed decrease in enzyme activity of 16 to 51% relative to the wild type F-3- O-GT.
3

Determination of the Substrate Specificity of the Mutant D344P of Citrus paradisi Flavonol-Specific 3-O-Glucosyltransferase

Spaulding, Nathan, Devaiah, Shivakumar, McIntosh, Cecelia A. 12 April 2017 (has links)
Plants produce a vast array of secondary metabolites. The phenolic compounds flavonoids are metabolites ubiquitous among plants and are known to aid in processes such as plant reproduction, UV defense, pigmentation and development. In relation to human health, flavonoids have also been found to possess anti-inflammatory, anti-cancer, and anti-oxidant properties. Flavonoids ability to participate in so many interactions is due in part to their subclass variation and further chemical modification. One such modification is glucosylation, where a glucose molecule is added to the flavonoid substrate. The enzymes that catalyze these reactions are known as glucosyltransferases. Citrus paradisi contains a glucosyltransferase that is specific to the 3-O position of flavonols. To further understand the reactions it catalyzes, Cp3-O-GT structure was modeled against an anthocyanidin/flavonol 3 GT found in Vitis vinifera to identify candidate amino acids for mutations. Mutants were then created using site-directed mutagenesis, and one mutant, D344P, was constructed by an aspartate being replaced with a proline based off of the sequence comparison of the original enzymes. Biochemically characterizing the mutant D344P protein will determine whether the mutation has an effect on the substrate specificity of Cp3-O-GT. An initial quickscreening assay using radioactive UDP-glucose as a sugar donor suggested there may have been expansion of substrate acceptance. Confirming time course assays did not support this. Additionally, results of these assays show that D344P protein has decreased activity with flavonols as compared to wild type Cp3-O-GT. with no expansion of substrate specificity. Models suggest that a change in protein conformation has resulted in decreased activity.

Page generated in 0.103 seconds