• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimum design of broadband microwave transister amplifiers

Yasui, Eishi January 1981 (has links)
No description available.
2

Otimização da largura de banda de ganho de um amplificador Raman na banda "O" baseada em algoritmo genético

Steinberg, David 28 January 2011 (has links)
Made available in DSpace on 2016-03-15T19:37:35Z (GMT). No. of bitstreams: 1 David Steinberg.pdf: 1201176 bytes, checksum: 38de6b0554611de53adf67ca19a556a1 (MD5) Previous issue date: 2011-01-28 / In this work, the O-band discrete Raman amplifier gain bandwidth optimization using genetic algorithm of a commercial simulator is carried out. The main objective of the study was to optimize the wide Raman amplifier gain bandwidth obtaining values of gain variation less than 0.5 dB. Using a fiber DCF (Dispersion Compensating Fiber) as Raman amplifier medium, the pump number was varied and the gain variation for each pump configuration has been verified. For a fixed 70 nm (1275-1345 nm) bandwidth consisting of 62 signal frequencies points, the results were generated for one, two, three, four, five, six, seven and eight backward pumps, which with the last one it was obtained the best result of 0.35 dB gain variation. In addition to this analysis, it was also found the Raman amplifier noise figure for this band and made a brief comparison with the conventional profile bands. / Neste trabalho a otimização da largura de banda de ganho de um amplificador Raman discreto na banda "O" utilizando algoritmo genético de um simulador comercial foi realizada. O objetivo principal do trabalho foi otimizar a maior largura de banda de ganho do amplificador Raman obtendo valores de variação de ganho menores que 0.5 dB. Utilizando uma fibra DCF (Dispersion Compensating Fiber) como meio de ganho do amplificador Raman, o número de bombeio foi variado e a variação de ganho para cada configuração de bombeio foi verificada. Para uma largura de banda fixa em 70 nm (1275-1345 nm) compreendendo 62 pontos de freqüências de sinal, foram gerados resultados para um, dois, três, quatro, cinco, seis, sete e oito bombeios contrapropagantes sendo que com esta última configuração foi obtido o melhor resultado de variação de ganho de 0.35 dB. Além desta análise, também foi verificado o perfil da figura de ruído do amplificador Raman nesta banda e feita uma breve comparação com o perfil em bandas convencionais.
3

Technology-independent CMOS op amp in minimum channel length

Sengupta, Susanta 13 July 2004 (has links)
The performance of analog integrated circuits is dependent on the technology. Digital circuits are scalable in nature, and the same circuit can be scaled from one technology to another with improved performance. But, in analog integrated circuits, the circuit components must be re-designed to maintain the desired performance across different technologies. Moreover, in the case of digital circuits, minimum feature-size (short channel length) devices can be used for better performance, but analog circuits are still being designed using channel lengths larger than the minimum feature sizes. The research in this thesis is aimed at understanding the impact of technology scaling and short channel length devices on the performance of analog integrated circuits. The operational amplifier (op amp) is chosen as an example circuit for investigation. The performance of the conventional op amps are studied across different technologies for short channel lengths, and techniques to develop technology-independent op amp architectures have been proposed. In this research, three op amp architectures have been developed whose performance is relatively independent of the technology and the channel length. They are made scalable, and the same op amp circuits are scaled from a 0.25 um CMOS onto a 0.18 um CMOS technology with the same components. They are designed to achieve large small-signal gain, constant unity gain-bandwidth frequency and constant phase margin. They are also designed with short channel length transistors. Current feedback, gm-boosted, CMOS source followers are also developed, and they are used in the buffered versions of these op amps.

Page generated in 0.0403 seconds