• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of an Operational Amplifier for High Performance Pipelined ADCs in 65nm CMOS

Payami, Sima January 2012 (has links)
In this work, a fully differential Operational Amplifier (OpAmp) with high Gain-Bandwidth (GBW), high linearity and Signal-to-Noise ratio (SNR) has been designed in 65nm CMOS technology with 1.1v supply voltage. The performance of the OpAmp is evaluated using Cadence and Matlab simulations and it satisfies the stringent requirements on the amplifier to be used in a 12-bit pipelined ADC. The open-loop DC-gain of the OpAmp is 72.35 dB with unity-frequency of 4.077 GHz. Phase-Margin (PM) of the amplifier is equal to 76 degree. Applying maximum input swing to the amplifier, it settles within 0.5 LSB error of its final value in less than 4.5 ns. SNR value of the OpAmp is calculated for different input frequencies and amplitudes and it stays above 100 dB for frequencies up to 320MHz. The main focus in this work is the OpAmp design to meet the requirements needed for the 12-bit pipelined ADC. The OpAmp provides enough closed-loop bandwidth to accommodate a high speed ADC (around 300MSPS) with very low gain error to match the accuracy of the 12-bit resolution ADC. The amplifier is placed in a pipelined ADC with 2.5 bit-per-stage (bps) architecture to check for its functionality. Considering only the errors introduced to the ADC by the OpAmp, the Effective Number of Bits (ENOB) stays higher than 11 bit and the SNR is verified to be higher than 72 dB for sampling frequencies up to 320 MHz.
2

Silicon-based millimeter-wave front-end development for multi-gigabit wireless applications

Sarkar, Saikat 02 November 2007 (has links)
With rapid advances in semiconductor technologies and packaging schemes, wireless products have become more versatile, portable, inexpensive, and user friendly over last few decades. However, the ever-growing demand of consumers to share information efficiently at higher speeds requires higher data rates, increased functionality, lower cost, and more reliability. The 60-GHz-frequency band, with 7 GHz license-free bandwidth addresses, such demands, and promises a low-cost multi-Gbps wireless transmission with a power budget in the order of 100 mW. This dissertation presents the systematic development of key building blocks and integrated 60-GHz-receiver solutions. Two different approaches are investigated and implemented in this dissertation: (1) low-cost SiGe-based direct-conversion low-power receiver front-end utilizing gain-boosting techniques in the front-end low-noise amplifier, and (2) CMOS-based heterodyne receiver front-end suitable for high-performance single-chip 60 GHz transceiver solution. The ASK receiver chip, implemented using 0.18 ?m SiGe, presents a complete antenna-to-baseband multi-gigabit 60 GHz solution with the lowest reported power budget (25 pJ/bit) to date. The subharmonic direct conversion front-end, implemented using 0.18 ?m SiGe, presents excellent conversion properties with a 4 GHz DSB RF bandwidth. On the other hand, the CMOS heterodyne implementation of the 60 GHz front-end receiver, targeted towards a robust, single-chip, high-performance, low-power, and integrated 60 GHz transceiver solution, presents the most wideband receiver front-end reported to date. Finally, different multi-band and tunable millimeter-wave circuits are presented towards the future implementation of cognitive and multi-band millimeter-wave radio.
3

Technology-independent CMOS op amp in minimum channel length

Sengupta, Susanta 13 July 2004 (has links)
The performance of analog integrated circuits is dependent on the technology. Digital circuits are scalable in nature, and the same circuit can be scaled from one technology to another with improved performance. But, in analog integrated circuits, the circuit components must be re-designed to maintain the desired performance across different technologies. Moreover, in the case of digital circuits, minimum feature-size (short channel length) devices can be used for better performance, but analog circuits are still being designed using channel lengths larger than the minimum feature sizes. The research in this thesis is aimed at understanding the impact of technology scaling and short channel length devices on the performance of analog integrated circuits. The operational amplifier (op amp) is chosen as an example circuit for investigation. The performance of the conventional op amps are studied across different technologies for short channel lengths, and techniques to develop technology-independent op amp architectures have been proposed. In this research, three op amp architectures have been developed whose performance is relatively independent of the technology and the channel length. They are made scalable, and the same op amp circuits are scaled from a 0.25 um CMOS onto a 0.18 um CMOS technology with the same components. They are designed to achieve large small-signal gain, constant unity gain-bandwidth frequency and constant phase margin. They are also designed with short channel length transistors. Current feedback, gm-boosted, CMOS source followers are also developed, and they are used in the buffered versions of these op amps.
4

Design of a Low Power, High Performance Track-and-Hold Circuit in a 0.18µm CMOS Technology / Design av en lågeffekts högprestanda track-and-hold krets i en 0.18µm CMOS teknologi.

Säll, Erik January 2002 (has links)
This master thesis describes the design of a track-and-hold (T&H) circuit with 10bit resolution, 80MS/s and 30MHz bandwidth. It is designed in a 0.18µm CMOS process with a supply voltage of 1.8 Volt. The circuit is supposed to work together with a 10bit pipelined analog to digital converter. A switched capacitor topology is used for the T&H circuit and the amplifier is a folded cascode OTA with regulated cascode. The switches used are of transmission gate type. The thesis presents the design decisions, design phase and the theory needed to understand the design decisions and the considerations in the design phase. The results are based on circuit level SPICE simulations in Cadence with foundry provided BSIM3 transistor models. They show that the circuit has 10bit resolution and 7.6mW power consumption, for the worst-case frequency of 30MHz. The requirements on the dynamic performance are all fulfilled, most of them with large margins.
5

Design of a Low Power, High Performance Track-and-Hold Circuit in a 0.18µm CMOS Technology / Design av en lågeffekts högprestanda track-and-hold krets i en 0.18µm CMOS teknologi.

Säll, Erik January 2002 (has links)
<p>This master thesis describes the design of a track-and-hold (T&H) circuit with 10bit resolution, 80MS/s and 30MHz bandwidth. It is designed in a 0.18µm CMOS process with a supply voltage of 1.8 Volt. The circuit is supposed to work together with a 10bit pipelined analog to digital converter. </p><p>A switched capacitor topology is used for the T&H circuit and the amplifier is a folded cascode OTA with regulated cascode. The switches used are of transmission gate type. </p><p>The thesis presents the design decisions, design phase and the theory needed to understand the design decisions and the considerations in the design phase. </p><p>The results are based on circuit level SPICE simulations in Cadence with foundry provided BSIM3 transistor models. They show that the circuit has 10bit resolution and 7.6mW power consumption, for the worst-case frequency of 30MHz. The requirements on the dynamic performance are all fulfilled, most of them with large margins.</p>

Page generated in 0.0633 seconds