Spelling suggestions: "subject:"galaxies -- devolution"" "subject:"galaxies -- c.volution""
1 |
Modèle d’évolution de galaxies pour simulations cosmologiques à grande échelleCôté, Benoit 20 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdorales, 2014-2015 / Nous présentons un modèle semi-analytique (MSA) conçu pour être utilisé dans une simulation hydrodynamique à grande échelle comme traitement de sous-grille afin de générer l’évolution des galaxies dans un contexte cosmologique. Le but ultime de ce projet est d’étudier l’histoire de l’enrichissement chimique du milieu intergalactique (MIG) ainsi que les interactions entre les galaxies et leur environnement. Le MSA inclut tous les ingrédients nécessaires pour reproduire l’évolution des galaxies de faible masse et de masse intermédiaire. Cela comprend l’accrétion du halo galactique et du MIG, le refroidissement radiatif, la formation stellaire, l’enrichissement chimique et la production de vents galactiques propulsés par l’énergie mécanique et la radiation des étoiles massives. La physique des bulles interstellaires est appliquée à chaque population d’étoiles qui se forme dans le modèle afin de relier l’activité stellaire à la production des vents galactiques propulsés par l’énergie mécanique. Nous utilisons des modèles stellaires à jour pour générer l’évolution de chacune des populations d’étoiles en fonction de leur masse, de leur métallicité et de leur âge. Cela permet d’inclure, dans le processus d’enrichissement, les vents stellaires des étoiles massives, les supernovae de Type II, Ib et Ic, les hypernovae, les vents stellaires des étoiles de faible masse et de masse intermédiaire ainsi que les supernovae de Type Ia. Avec ces ingrédients, notre modèle peut reproduire les abondances de plusieurs éléments observées dans les étoiles du voisinage solaire. De manière plus générale, notre MSA peut reproduire la relation actuelle observée entre la masse stellaire des galaxies et la masse de leur halo de matière sombre. Il peut aussi reproduire la métallicité, la quantité d’hydrogène et le taux de formation stellaire spécifique observés dans les galaxies de l’Univers local. Notre modèle est également consistant avec les observations suggérant que les galaxies de faible masse sont davantage affectées par la rétroaction stellaire que les galaxies plus massives. De plus, le modèle peut reproduire les différents comportements, soit oscillatoire ou stable, observés dans l’évolution du taux de formation stellaire des galaxies. Tous ces résultats démontrent que notre MSA est suffisamment qualifié pour traiter l’évolution des galaxies à l’intérieur d’une simulation cosmologique. / We present a semi-analytical model (SAM) designed to be used in a large-scale hydrodynamical simulation as a sub-grid treatment in order to generate the evolution of galaxies in a cosmological context. The ultimate goal of this project is to study the chemical enrichment history of the intergalactic medium (IGM) and the interactions between galaxies and their surrounding. Presently, the SAM takes into account all the ingredients needed to compute the evolution of low- and intermediate-mass galaxies. This includes the accretion of the galactic halo and the IGM, radiative cooling, star formation, chemical enrichment, and the production of galactic outflows driven by the mechanical energy and the radiation of massive stars. The physics of interstellar bubbles is applied to every stellar population which forms in the model in order to link the stellar activity to the production of outflows driven by mechanical energy. We use up-to-date stellar models to generate the evolution of each stellar population as a function of their mass, metallicity, and age. This enables us to include, in the enrichment process, the stellar winds from massive stars, Type II, Ib, and Ic supernovae, hypernovae, the stellar winds from low- and intermediate-mass stars in the asymptotic giant branch, and Type Ia supernovae. With these ingredients, our model can reproduce the abundances of several elements observed in the stars located in the solar neighborhood. More generally, our SAM reproduces the current stellar-to-dark-halo mass relation observed in galaxies. It can also reproduce the metallicity, the hydrogen mass fraction, and the specific star formation rate observed in galaxies as a function of their stellar mass. Our model is also consistent with observations which suggest that low-mass galaxies are more affected by stellar feedback than higher-mass galaxies. Moreover, the model can reproduce the periodic and the stable behaviors observed in the star formation rate of galaxies. All these results show that our SAM is sufficiently qualified to treat the evolution of low- and intermediate-mass galaxies inside a large-scale cosmological simulation.
|
2 |
Évolution chimique du Grand Nuage de MagellanVan der Swaelmen, Mathieu 12 April 2013 (has links) (PDF)
Malgré des années de travaux théoriques et observationnels intensifs, nous sommes toujours loin d'une complète compréhension de l'univers proche, la Voie Lactée (MW) et ses galaxies voisines. Parmi les satellites de la MW, le Petit et le Grand Nuage de Magellan (LMC) sont particulièrement intéressants puisqu'ils forment le plus proche exemple de galaxies en interaction gravitationnelle et hydrodynamique, et partant, constituent un laboratoire unique pour étudier les effets des marées et l'échange de matière sur l'évolution chimique et l'histoire de la formation stellaire d'une galaxie. Le LMC est une galaxie de petite masse barrée à disque, prototype des galaxies riches en gaz que l'on pense jouer un rôle important dans la construction des grandes galaxies dans le cadre du ΛCDM. De plus, avec sa métallicité actuelle d'environ le tiers de la métallicité solaire, le chemin d'enrichissement chimique suivi par le LMC donne un grand poids aux yields des générations stellaires pauvres en métaux, ce qui fait du LMC un environnement idéal pour étudier la nucléosynthèse aux basses métallicités. Ce travail de doctorat vise à: 1) caractériser chimiquement la population de la barre du LMC, 2) comparer les tendances des éléments de la MW et du LMC et interpréter les différences ou ressemblance en termes d'évolution chimique et/ou de processus nucléosynthétiques (contraintes sur les sites et les processus nucléosynthétiques), 3) comparer l'évolution chimique de la barre et du disque interne du LMC et interpréter les différence ou ressemblance dans le contexte de la formation de la barre. Nos résultats montrent que l'histoire chimique du LMC a connu un forte contribution des supernovae de type I ainsi qu'un fort enrichissement en éléments s par les vents d'étoiles AGB pauvres en métaux. Par rapport à la MW, les étoiles massives ont eu une contribution plus petite à l'enrichissement chimique du LMC. Les différences observées entre la barre et le disque parlent en faveur d'un épisode de formation stellaire accrue il y a quelques Gyr, ayant lieu dans les zones centrales du LMC et conduisant à la formation de la barre. Ceci est en accord avec les histoires de la formation stellaire récemment dérivées.
|
3 |
The Role of AGN Feedback in Galaxy Formation / Le rôle de la rétroaction des noyaux actifs dans la formation des galaxiesBieri, Rebekka 26 September 2016 (has links)
L’objectif de ma thèse porte sur les interactions entre les noyaux actifs de galaxies et le milieu interstellaire des galaxies. En particulier, je mets l’accent sur les deux mécanismes possibles responsables de la production des vents par les trous noirs : les jets et les vents produits par le rayonnement de ces trous noirs. Les simulations hydrodynamiques de haute résolution des galaxies comprenant la rétroac- tion d’un jet ont montré que l’activité des noyaux actifs peut conduire à une pression exces- sive sur les régions denses de formation stellaire dans les galaxies, et donc à augmenter la formation d’étoiles, conduisant à un effet positif de rétroaction. Je montre que ces noyaux actifs induits par pression régulée et formation d’étoiles peuvent aussi être une explica- tion possible des taux de formation stellaire élevés observés dans l’Univers à haut décalage spectral. De plus, j’ai également étudié en détails comment le rayonnement émis à partir d’un disque d’accrétion autour du trou noir agit efficacement avec le milieu interstellaire et entraîne un fort vent galactique, en simulant la propagation des photons à partir des équations hydrodynamiques du rayonnement. Les simulations montrent que la grande luminosité d’un quasar est en effet capable de conduire des vents à grande échelle et à grande vitesse. Le rayonnement infrarouge est nécessaire pour transérer efficacement le gaz par multi-diffusion sur la poussière dans les nuages denses. Le nombre typique de multi-diffusion diminue rapidement quand le nuage central de gaz central se dilate et se rompt, ce qui permet au rayonnement de s’échapper à travers les canaux à faible densité. / Supermassive black holes (SMBHs) are known to reside in the centres of most large galaxies. The masses of these SMBHs are known to correlate with large-scale properties of the host galaxy suggesting that the growth of the BHs and large-scale structures are tightly linked. A natural explanation for the observed correlation is to invoke a self-regulated mechanism involving feedback from Active Galactic Nuclei (AGN). The focus of this thesis is on the interactions between AGN outflows and the ISM and how the feedback impacts the host galaxy. In particular, it focuses on the two possible mechanism of outflows, namely, outflows related to AGN jets and outflows produced by AGN radiation. High resolution, galaxy scale hydrodynamical simulations of jet-driven feedback have shown that AGN activity can over-pressurise dense star-formation regions of galaxies and thus enhance star formation, leading to a positive feedback effect. I propose, that such AGN-induced pressure-regulated star formation may also be a possible explanation of the high star formation rates recently found in the high-redshift Universe. In order to study in more detail the effects of over-pressurisation of the galaxy, I have performed a large set of isolated disc simulations with varying gas-richness in the galaxy. I found that even moderate levels of over-pressurisation of the galaxy boosts the global star formation rate by an order of magnitude. Additionally, stable discs turn unstable which leads to significant fragmentation of the gas content of the galaxy, similar to what is observed in high-redshift galaxies. The observed increase in the star formation rate of the galaxy is in line with theoretical predictions. I have also studied in detail how radiation emitted from a thin accretion disc surrounding the BH effectively couples to the surrounding ISM and drives a large scale wind. Quasar activity is typically triggered by extreme episodes of gas accretion onto the SMBH, in particular in high-redshift galaxies. The photons emitted by a quasar eventually couple to the gas and drive large scale winds. In most hydrodynamical simulations, quasar feedback is approximated as a local thermal energy deposit within a few resolution elements, where the efficiency of the coupling between radiation of the gas is represented by a single parameter tuned to match global observations. In reality, this parameter conceals various physical processes that are not yet fully un- derstood as they rely on a number of assumptions about, for instance, the absorption of photons, mean free paths, optical depths, and shielding. To study the coupling between the photons and the gas I simulated the photon propagation using radiation-hydrodynamical equations (RHD), which describe the emission, absorption and propagation of photons with the gas and dust. Such an approach is critical for a better understanding of the coupling between the radiation and gas and how hydrodynamical sub-grid models can be improved in light of these results...
|
4 |
Évolution chimique du Grand Nuage de Magellan / Chemical evolution of the Large Magellanic CloudVan der Swaelmen, Mathieu 12 April 2013 (has links)
Malgré des années de travaux théoriques et observationnels intensifs, nous sommes toujours loin d’une complète compréhension de l’univers proche, la Voie Lactée (MW) et ses galaxies voisines. Parmi les satellites de la MW, le Petit et le Grand Nuage de Magellan (LMC) sont particulièrement intéressants puisqu’ils forment le plus proche exemple de galaxies en interaction gravitationnelle et hydrodynamique, et partant, constituent un laboratoire unique pour étudier les effets des marées et l’échange de matière sur l’évolution chimique et l’histoire de la formation stellaire d’une galaxie. Le LMC est une galaxie de petite masse barrée à disque, prototype des galaxies riches en gaz que l’on pense jouer un rôle important dans la construction des grandes galaxies dans le cadre du ΛCDM. De plus, avec sa métallicité actuelle d’environ le tiers de la métallicité solaire, le chemin d’enrichissement chimique suivi par le LMC donne un grand poids aux yields des générations stellaires pauvres en métaux, ce qui fait du LMC un environnement idéal pour étudier la nucléosynthèse aux basses métallicités. Ce travail de doctorat vise à: 1) caractériser chimiquement la population de la barre du LMC, 2) comparer les tendances des éléments de la MW et du LMC et interpréter les différences ou ressemblance en termes d’évolution chimique et/ou de processus nucléosynthétiques (contraintes sur les sites et les processus nucléosynthétiques), 3) comparer l’évolution chimique de la barre et du disque interne du LMC et interpréter les différence ou ressemblance dans le contexte de la formation de la barre. Nos résultats montrent que l’histoire chimique du LMC a connu un forte contribution des supernovae de type I ainsi qu’un fort enrichissement en éléments s par les vents d’étoiles AGB pauvres en métaux. Par rapport à la MW, les étoiles massives ont eu une contribution plus petite à l’enrichissement chimique du LMC. Les différences observées entre la barre et le disque parlent en faveur d’un épisode de formation stellaire accrue il y a quelques Gyr, ayant lieu dans les zones centrales du LMC et conduisant à la formation de la barre. Ceci est en accord avec les histoires de la formation stellaire récemment dérivées. / Despite decades of intensive observational and theoretical work, we are still far from a complete and clear understanding of the nearby universe, the Milky Way (MW) and its neighbours. Among the satellites of the MW, the Small and Large Magellanic Cloud (LMC) are of particular interest since they form the closest example of galaxies in gravitational and hydrodynamical interaction, and therefore constitute a unique laboratory to study the effect of tides and matter exchange on the chemical evolution and star formation history of a galaxy. The LMC is a low-mass barred disc galaxy, prototypical of gas-rich galaxies that are thought to play an important role in the build-up of large galaxies in the ΛCDM framework. Furthermore, with its present day metallicity of only third of solar, the chemical enrichment path followed by the LMC gives a heavy weight to the yields of metal-poor stellar generations, which makes the LMC an ideal environment to study nucleosynthesis at low metallicities. This thesis work aims at: 1) chemically characterizing the LMC bar population, 2) comparing the elemental trends of the MW and the LMC and interpreting the differences or similarities in terms of chemical evolution and/or nucleosynthesis processes (constraints on the nucleosynthetic sites and processes), 3) comparing the chemical evolution of the LMC bar and inner disc and interpreting the differences or similarities between the LMC bar and inner disc in the context of the bar formation. Our results show that the chemical history of the LMC experienced a strong contribution from type Ia supernovae as well as a strong s-process enrichment from metal-poor AGB winds. Massive stars made a smaller contribution to the chemical enrichment compared to the MW. The observed differences between the bar and the disc speak in favour of an episode of enhanced star formation a few Gyr ago, occurring in the central parts of the LMC and leading to the formation of the bar. This is in agreement with recently derived star formation histories.
|
5 |
Enrichissement chimique dû à une collision majeure entre des galaxies spirales riches en gazRichard, Simon 12 April 2018 (has links)
Nous avons effectué 14 simulations de collisions majeures de galaxies spirales riches en gaz. Ces simulations ont été réalisées grâce à GCD+, un algorithme qui inclue la gravité, l'hydrodynamique, la formation stellaire et un traitement détaillé de l'enrichissement en métaux. Nous avons analysé les propriétés cinématiques, structurelles et chimiques des étoiles formées avant, pendant et après la collision. Ces collisions forment une galaxie ayant un disque pouvant être divisé en deux composantes. Ces deux composantes peuvent correspondre au disque mince et au disque épais d'une galaxie, et leur profil de luminosité peut être ajustées par une loi exponentielle. Les étoiles formées avant et pendant la collision ont une longueur d'échelle plus grande que les étoiles formées après la collision par 20% en moyenne. Du point de vue de la cinématique, les étoiles vieilles ont des dispersions en vitesse plus élevées et sont en retard sur les étoiles jeunes pour ce qui est de la vitesse de rotation. Le sursaut de formation d'étoiles associé à la collision permet d'enrichir rapidement le gaz en différent métaux. Les explosions de supernovae de type II qui ont lieu rapidement après la collision, étant donné la courte durée de vie des étoiles qui les produisent, enrichissent le milieu intergalactique en éléments a. Les supernovae de type la, ayant une distribution plus étendue dans le temps, permettent l'enrichissement en fer des deux populations associées aux composantes du disque, ce qui permet d'obtenir une population stellaire vieille ayant un rapport [a/Fe] supérieur à celui des étoiles jeunes et ce, même à des métallicités relativement élevées ([Fe/H] = —0.5). Ce résultat pourrait expliquer le rapport [a/Fe] élevé que l'on retrouve chez les étoiles du disque épais de la Voie lactée. / We employ GCD+, a N-body, smoothed particle hydrodynamic simulation, including star formation and a detailed treatment of chemical enrichment, to follow 14 gas-rich mergers that resuit almost ail in a galaxy with disk morphology. We trace the kinematic, structural, and chemical properties of stars formed before, during, and after the merger. We show that such merger produces two exponential disk components, with the older, hotter component having a scale length 20% larger than the later forming, cold disk. On a kinematical point of view the old stellar population clearly lags the rotation velocity of the young disk and hâve a higher rotational velocity dispersion. Rapid star formation during the mergers quickly enriches the protogalactic gas réservoir, resulting in high metallicities of the forming stars. Thèse stars form from gas largely polluted by Type II supernovae, which form rapidly in the merger-induced starburst. After the mergers, a thin disk forms from gas that has had time to be polluted by type la supernovae. This fact lead to an old stellar population with a higher [a/Fe] ratio than the young population at quite high metalicity ([Fe/H] = —0.5). We examine the proposai that increased star formation during gas-rich mergers may explain the high a-to-iron abundance ratios that exist in the relatively high-metallicity, thick-disk component of the Milky way.
|
6 |
Enrichissement chimique du milieu intergalactique par des vents galactiques anisotropesPinsonneault, Steve 18 April 2018 (has links)
Nous avons utilisé un algorithme P³M afin de simuler la formation de galaxies dans une boîte cosmologique de (15 Mpc)³ dans un univers ΛCDM d'un décalage spectral de 24 à 2. Nous avons ensuite simulé des vents galactiques anisotropes et suivi l'effet de rétroaction de ces vents sur l'évolution des galaxies naines simulées. Les vents sont modélisés comme étant bipolaires et les angles d'ouverture étudiés sont de α=60°, 90°, 120°, 150° et 180°. Ces vents modélisés ont tendance à se propager dans une direction perpendiculaire à la structure à grande échelle (filament, crêpe) hébergeant la galaxie. Nous incluons l'effet de la suppression de galaxies par la photoionisation à partir d'un décalage spectral z=6 dans cinq de nos simulations et l'ignorons dans les cinq autres afin de comparer cette dernière série de résultats avec des travaux antérieurs. Nous incluons aussi les interactions entre les halos (accrétion, fusion et fission) pour modéliser l'apparition de sursauts d'étoiles produisant des supernovae. Les vents anisotropes sont les plus susceptibles d'enrichir les régions de faibles densités. De plus, ils ont moins de chances de se superposer, ce qui augmente la fraction de milieu intergalactique enrichie en métaux. L'anisotropie grandissante des vents diminue aussi la probabilité qu'un halo soit frappé et dépossédé de son gaz, empêchant ainsi la formation d'une galaxie. Lorsque l'on diminue l'angle d'ouverture des vents de α=180° (un vent isotrope) à un angle α=60°, le nombre de galaxies créées double. Cela a pour effet de produire le double de vents. Ces vents étant plus anisotropes, ils se superposent moins, ce qui a pour résultat que la fraction de volume enrichie passe de 8%, dans le cas de vents isotropes, à 28% pour des vents ayant un angle d'ouverture de 60°. L'anisotropie des vents augmente l'enrichissement des régions de toutes densités, ce qui est dû en partie au fait que les vents de hautes anisotropies sont plus nombreux. Lorsque nous ne tenons pas compte de cet effet, nous remarquons que l'anisotropie des vents crée une augmentation de l'enrichissement pour des densités allant jusqu'à 10p̄, où p̄ est la densité moyenne. Nous attribuons cet effet à l'évolution dynamique de nos simulations. Le gaz situé dans les régions de faible densité est fortement enrichi par les vents anisotropes, mais une partie de ce gaz est ensuite accrétée par les structures à grandes échelles. Les régions de hautes densités sont plus efficacement enrichies que les régions de faibles densités (~80% comparé à ~20%), mais celles-ci sont privilégiées (un maximum d'enrichissement par volume à 0.3p̄). L'effet de photoionisation diminue grandement le nombre de galaxies de faibles masses formées à z<3, ce qui produit une baisse de la fraction de volume enrichie après z=3 puisque l'effet d'accrétion l'emporte sur le nombre de vents créés, particulièrement dans les régions de faibles densités.
|
7 |
Étude des régions HII dans la galaxie spirale barrée NGC5430Brière, Élaine 17 April 2018 (has links)
Dans le cadre de mon projet de maîtrise, je me suis intéressée à la galaxie spirale NGC 5430 dans le but de mieux comprendre le rôle des barres sur l'évolution galactique. Pour ce faire, j'ai caractérisé les régions de formation d'étoiles jeunes (entre deux et quatorze millions d'années), communément appelées régions HII, à l'aide de données obtenues avec le nouvel instrument SpIOMM et un spectrographe conventionnel à l'Observatoire du Mont-Mégantic. Ainsi, j'ai réalisé l'étude de NGC 5430 au moyen de cartes de l'émission nébulaire, de courbes de rotation et de diagrammes diagnostiques permettant d'estimer la métallicité des régions HII ainsi que l'âge des populations d'étoiles jeunes qu'elles contiennent. J'ai, entre autres, déterminé que les régions HII situées dans la barre de cette galaxie voyageaient plus lentement et possédaient en moyenne des populations stellaires plus jeunes que les régions se trouvant dans les bras spiraux. J'ai également observé que deux vagues de formation stellaire distinctes ont eu lieu à la grandeur de la barre et des bras. De plus, aucun gradient de métallicité et d'âge en fonction du rayon de la galaxie n'a été mesuré, ce qui serait en accord avec la théorie suggérant que la barre constitue un mécanisme de mélange du gaz. Enfin, en comparant les résultats tirés de mes données à ceux présentés dans la littérature pour ce même objet, il m'a été possible de démontrer l'efficacité de SpIOMM
|
Page generated in 0.0933 seconds