• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 326
  • 36
  • 29
  • 25
  • 8
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 702
  • 254
  • 227
  • 207
  • 180
  • 180
  • 176
  • 163
  • 158
  • 147
  • 136
  • 109
  • 101
  • 72
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

The Space Density, Environments, and Physical Properties of Large Ly α Nebulae

Prescott, Moire Kathleen Murphy January 2009 (has links)
Powerful forces are at work in giant Ly α nebulae, a rare and mysterious population in the high redshift universe. Much like the spatially extended emission line halos around high redshift radio galaxies . but without the strong radio emission . Ly α nebulae (or Ly α 'blobs') boast copious Ly α emission (10⁴⁴ erg s⁻¹), large sizes (∼100 kpc), complex gas morphologies, and the company of numerous compact, star-forming galaxies, and may offer a window into dramatic episodes of massive galaxy formation. The small sample sizes and complex inner workings of Ly α nebulae have limited progress on understanding the their space density, environments, and physical conditions. This thesis strives to answer fundamental questions about Ly α nebulae and pave the way for understanding their role in the build up of massive galaxy systems. To address the frequency of collapse of these massive structures, we carried out the largest systematic Ly α nebula survey to date and measured the Ly α nebula space density. As an unbiased test of the environment of Ly α nebulae, we studied the surroundings of a Ly α nebula and confirmed that Ly α nebulae reside preferentially in overdense regions. To disentangle the sources of ionization, we took a census of all the compact ionization sources within a large Ly α nebula using high resolution imaging. Finally, we used photoionization modeling to put constraints on the physical conditions, the metallicity, and the sources of ionization within Ly α nebulae. Future work will be able to build on this thesis by expanding the systematic search for Ly α nebulae to other existing deep broad-band datasets, mapping the three-dimensional overdense structures in which Ly α nebulae live out to ≥ 50 (comoving) Mpc scales, and disentangling multiple sources of ionization within a larger sample of individual systems using deep optical and near-infrared spectroscopy and detailed photoionization modeling.
92

Infrared Observations of the Spiral Galaxy NGC 891

Whaley, Cynthia 27 August 2007 (has links)
This thesis is a detailed, multi-waveband study of the inner 14 kpc of the famous spiral galaxy, NCG 891. The primary data have come from the Infrared Space Observatory's Camera. These data are images of the galaxy in 9 different mid-infrared wavebands. We have supported these data with archived data from the Spitzer Infrared Array Camera in 4 similar wavebands. Surface brightness contour maps of the galaxy were created and examined to determine where the mid-infrared emitters are located with respect to the galactic plane. We have determined that the main mid-infrared emission, due to warm dust and PAHs, lies in a thin disk of width 700 - 800 pc, but has faint emission that reaches up to about 2.3 kpc into the halo. The infrared spectral energy distribution (SED) for four environments in NGC 891 were created from the above mentioned wavebands as well as measurements from Spitzer's Multiband Imaging Photometer (3 Far-Infrared wavebands), the Two Micron All Sky Survey J, H, and K near-infrared wavebands, and the Sub-millimeter Common User Bolometer Array 450 and 850 $\mu$m bands. These spectra were fit with a SED model created by Frederic Galliano, and the physical properties of these environments were computed. The maps and SED show that while there is a relatively large amount of dust in NGC 891's halo, there is a depletion of PAHs beyond 2.3 kpc from the mid-plane. This is only the fourth galaxy to date that has PAH emission discovered in the halo, and it is the first in which the SED has been modeled for the halo. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2007-08-15 22:39:02.167
93

Low luminosity elliptical galaxies

Halliday, Claire January 1998 (has links)
Long-slit spectra for the photometric axes of a sample of 14 elliptical galaxies, predominantly low-luminosity ellipticals, in the Virgo cluster and in nearby groups, are studied to investigate the galaxy kinematical structure and stellar evolutionary history. To determine the galaxy kinematical structure, the shape of the line-of-sight velocity distribution (hereafter LOSVD) is measured using the Fourier Correlation Quotient method of Bender (1990), adopting the parametrisation of the LOSVD due to van der Marel and Franx (1993). This parametrisation enables the asymmetrical and symmetrical deviations of the LOSVD from a Gaussian function to be measured by the amplitudes H(_3) and H(_4) of the Gauss-Hermite series respectively. Rotation, velocity dispersion (σ), H(_3) and H(_4) are determined as a function of radius for both the major and minor axes of our sample. To summarise, LOSVD asymmetries were measured for the major axes of 12 galaxies which in the majority of cases have been interpreted as evidence for central disk-like components; evidence of both radial and tangential anisotropy were found from the measurement of H(_4); central decreases in σ are measured for 3 galaxies, which is interpreted as evidence that they have undergone some form of merger or interaction. On the basis of their measurements, galaxies are classified into 3 classes: types 1, 2 and 3. "Type 1" galaxies show strong evidence for both disk and bulge components and have the greatest measured values of H(_3) for our sample. Galaxies of "type 2" show strong evidence for embedded disk components and most (3 of 4) are measured to have central decreases in a. "Type 3" galaxies have kinematically-decoupled cores. Other galaxies, not classified, are NGC 3379 and NGC 4468.Measurements of the line-strength indices Mg(_b), Mg(_2), Hβ, Fe5270, Fe5335 and <Fe> are determined as a function of radius for all spectra and established to the Lick/IDS scale. The relations Mg’(_b)-Mg(_2), Mg’(_b), - log(σ), Mg(_b)- <Fe> and Hβ-[Mg(_b) <Fe>] are then studied. The Mg’(_b),-Mg(_2) relation of Wegner et al. (1998) and the calibrations of Worthey (1994) are compared with measurements here: this is used as a check of our calibration of Mg’(b), and Mg(_2). Measurements in the Mg’(_b)-log(σ) plane are considered separately for each galaxy and compared with the central relation of Colless et al. (1998). Measurements for most galaxies are found to be in good agreement with this relation. Measurements of Mg(_b) and <Fe> are similarly considered for each galaxy and compared with the predictions of the models of Worthey (1994). For the majority of galaxies, measurements are clearly offset from the Mg(_b)-<Fe> model grid of Worthey (1994), representing an [(^Mg)-(_Fe)] overabundance. This is an important result which shows that the [(^Mg)-(_Fe)] overabundance detected previously for the giant ellipticals similarly exists for ellipticals of the low luminosities studied here. For most galaxies this overabundance is found to be a constant function of radius. For the "type 2" galaxy NGC 3605, and NGC 4468, measurements are consistent with solar abundance ratios. Finally, measurements of Hβ and [Mg(_b) <Fe>] are compared with the models of Worthey (1994) to distinguish gradients in both age and metallicity. For all galaxies, gradients in metallicity are found with metallicity decreasing as a function of radius. For 5 galaxies (NGC 4564, NGC 3377, NGC 4478, NGC 4339 and NGC 3605) age gradients are also detected, with the galaxy centre shown to be younger than the surrounding galaxy. Interpreting these results together, different formation scenarios are proposed for the different galaxy types. For galaxies of "type 1", formation by homogenous, dissipational collapse is proposed. Galaxies of "type 2" show evidence for a less homogenous evolutionary history involving dissipationless collapse. No conclusive scenario is proposed for galaxies of "type 3".
94

Observational Studies of Interacting Galaxies and the Development of the Wide Integral Field Infrared Spectrograph

Chou, Chueh-Yi 19 March 2013 (has links)
Interacting galaxies are thought to be the essential building blocks of elliptical galaxies under the hierarchical galaxy formation scenario. The goal of my dissertation is to broaden our understanding of galaxy merger evolution through both observational studies and instrument developments. Observationally, I approach the goal photometrically and spectroscopically. The photometric studies better constrain the number density evolution of wet and dry mergers through five CFHTLS broad band photometry up to z~1. Meanwhile, by comparing the merger and elliptical galaxy mass density function, I discovered that the most massive mergers are not all formed via merging processes, unless the merging timescale is much longer than the expected value. Spectroscopically, the kinematic properties of close pair galaxies were studied to understand how star formation were quenched at z~0.5. I discovered that the number of red-red pairs are rare, which does not support the gravitational quenching mechanism suggested by the hot halo model. In instrumentation, one efficient way to study galaxy mergers is to use the integral field spectroscopic technique, capitalizing its intrinsic capability of obtaining 2-D spectra effectively. However, the currently available integral field spectrographs are inadequate to provide the required combination of integral field size and spectral resolution for merger studies. I, therefore, have developed two optical designs of a wide integral field infrared spectrograph (WIFIS), which I call WIFIS1 and WIFIS2, to satisfy the requirements of merger studies. Both the designs provide an integral field of 12" x 5" on 10-m telescopes (or equivalently 52" x 20" on 2.3-m telescopes). WIFIS1 delivers spectral resolving powers of 5,500 covering each of JHK bands in a single exposure; WIFIS2 does a lower power of 3,000 focusing on a shorter wavebands of zJ and H bands. All the WIFIS2 optical components have either been or being fabricated, and some of the components have been characterized in the laboratory, including its integral field unit, gratings, and mirrors. The expected completion of WIFIS based on WIFIS2 is 2013 summer, which will be followed by WIFIS1-based spectrograph in a few years.
95

The globular cluster system of the Sombrero galaxy

VanDalfsen, Marcel L. Harris, W. E. January 2004 (has links)
Thesis (Ph.D.)--McMaster University, 2005. / Supervisor: W.E. Harris. Includes bibliographical references (p. 127-132).
96

Semi analytical simulations of primordial star cluster formation

Santoro, Fernando January 2003 (has links)
No description available.
97

Exploring the faint source population at 15.7 GHz

Whittam, Imogen Helen January 2014 (has links)
A sample of 296 faint (> 0.5 mJy) radio sources is selected from an area of the Tenth Cambridge (10C) survey at 15.7 GHz in the Lockman Hole. The 10C survey is complete to 0.5 mJy at 15.7 GHz and has a resolution of 30 arcsec. By matching this catalogue to several lower frequency surveys (e.g. including a deep GMRT survey at 610 MHz, a WSRT survey at 1.4 GHz, NVSS, FIRST and WENSS) I have investigated the radio spectral properties of the sources in this sample; all but 30 of the 10C sources are matched to a source in one or more of these surveys. I have found a significant increase in the proportion of flat spectrum sources at flux densities below 1 mJy – the median spectral index between 15.7 GHz and 610 MHz changes from 0.75 for flux densities greater than 1.5 mJy to 0.08 for flux densities less than 0.8 mJy. Thus a population of faint, flat spectrum sources is emerging at flux densities greater than approximately 1 mJy. The spectral index distribution of this sample of sources selected at 15.7 GHz is compared to those of two samples selected at 1.4 GHz from FIRST and NVSS. I find that there is a significant flat spectrum population present in the 10C sample which is missing from the samples selected at 1.4 GHz. The 10C sample is compared to a sample of sources selected from the SKADS Simulated Sky by Wilman et al.; this simulation fails to reproduce the observed spectral index distribution and significantly under predicts the number of sources in the faintest flux density bin. I conclude that it is likely that the observed faint, flat spectrum sources are a result of the cores of FRI sources becoming dominant at high frequencies, rather than the emergence of a new population of starforming galaxies. I have used recent Very Long Baseline Interferometry (VLBI) observations by Middleberg et al. with a resolution of 10 mas to investigate the properties of these faint 10C sources in the Lockman Hole and find that 33 out of the 51 10C sources in the VLBI field (65 percent) are detected by the VLBI observations. The high brightness temperature of these VLBI-detected sources rules out the possibility that this faint, high frequency population is dominated by starbursting or starforming sources and indicates that they must be Active Galactic Nuclei. The sources in the Lockman Hole 10C sample are matched to optical, infrared and Xray data available in the field. A complete sample of 96 sources with high-resolution radio information available is defined; multi-wavelength counterparts are identified for 80 out of the 96 sources in this sample, for which is it possible to derive photometric redshifts. The radioto- optical ratios of these sources show that the 10C sample is almost completely dominated by radio galaxies. 59/80 sources have luminosities greater than the FRI/FRII dividing luminosity. The nature of these radio galaxies is investigated, using the multi-wavelength data to split the sources into high-excitation and low-excitation radio galaxies (HERGs and LERGs respectively). This shows that 34 sources are probably HERGs and 33 are probably LERGs, with 29 which could not be classified at this stage. The properties of these HERGs and LERGs are compared and I find that the HERGs tend to be found at higher redshifts, have flatter spectra, higher flux densities and smaller linear sizes. This study is extended to lower flux densities using new, very deep, observations made with the Arcminute Microkelvin Imager in two fields. I use these observations to extend the 15.7-GHz source count down to 0.1 mJy, a factor of five deeper than the 10C count. These new deeper counts are consistent with the extrapolation of the fit to the 10C count, and do not show any evidence for an upturn. There is therefore no evidence for a new population (e.g. of starforming sources) contributing to the 15.7 GHz source count above 0.1 mJy, and suggesting that the faint, high-frequency population continues to be dominated by radio galaxies. Recent models of the high-frequency source counts under-predict the number of sources observed by a factor of two, consistent with the fact that these models fail to include the dominance of the cores and the faintness of the extended structures of these sources.
98

Studying galaxy formation through Lyman alpha in emission and absorption

Barnes, Luke Andrew January 2010 (has links)
Galaxy formation is one of the central problems of Physical Cosmology. Neutral hydrogen plays an important role, linking the collapse of cooling gas into haloes with the formation of stars. Lyman alpha, hydrogen's strongest spectral line, can directly probe neutral hydrogen in the high redshift Universe. Lyα can be observed in absorption in Damped Lyman Alpha systems (DLAs): high Hi column density regions that dominate the neutral gas content of the Universe between z ~ 0-5. Lyα in emission is an important signature of early, starforming galaxies. Both populations, however, present significant theoretical challenges. As part of my thesis, I have developed a Monte Carlo Lyα radiative transfer code to investigate models of early galaxies. Rauch et al. (2008) performed an ultra-deep spectroscopic survey and discovered a new population of very faint, spatially extended Lyα emitters, which they claimed to be the long-sought host galaxies of DLAs at z ~ 3. I show here that a simple analytical model, which reproduces the incidence rate and kinematics of DLAs in the context of λCDM models for structure formation, also reproduces the size distribution of the faint Lyα emitters for plausible parameters, which supports their identification as DLA host galaxies. The model suggests that galaxies in haloes with vc ~ 100-150 km s-1 account for the majority of DLA host galaxies, and that these galaxies at z ~ 3 are the building blocks of typical present-day galaxies like our Milky Way. I further use my newly developed Lyα code to perform detailed 1D radiative transfer calculations, investigating the spatial and spectral distribution of Lyα emission due to star formation at the centre of DLAs, and its dependence on the spatial and velocity structure of the gas. The modelling reproduces the observed properties of both DLAs and the faint Lyα emitters, including the velocity width and column density distribution of DLAs and the large observed spatial extent of the faint emitters. In the model, haloes hosting DLAs retain up to 20% of the cosmic baryon fraction in the form of neutral hydrogen. The scattering of Lyα photons at the observed radii, which can be as large as 50 kpc, requires the bulk velocity of the gas at the centre of the haloes to be moderate. I furthermore perform 3D Lyα radiative transfer simulations, building on numerical simulations of galaxy formation that include galactic winds and gas infall. The Lyα emission region is shown to be larger and smoother than the cross-section for damped absorption by ~ 50%, with Lyα photons scattered effectively by gas with column densities >~ 1017 cm⁻². The spectra typically show two peaks, with the relative strength of the red (blue) peak being a reflection of the relative contribution of outflow (inflow) in the velocity profile. There is considerable variation in the observed line profile and spectral intensity with viewing angle. These more realistic models support many of the simplifying assumptions of my previous models, and have the potential to probe the important role of galactic winds in protogalaxies. The main conclusion is that the faint population of Lyα emitters are indeed the long sought host population of DLAs. Ultra-faint observations of Lyα emission have exceptional potential to directly probe the spatial distribution and kinematics of neutral hydrogen in early galaxies.
99

Properties and evolution of galaxy clustering at 2<z<5 based on the VIMOS Ultra Deep Survey

Durkalec, Anna 11 December 2014 (has links)
Cette thèse porte sur l'étude des propriétés et l'évolution de regroupement de galaxies pour les galaxies de la gamme de 2<z<5 de VUDS Sondage, qui est la plus grande enquête de galaxie spectroscopique à z>2. Je ai pu mesurer la distribution spatiale d'une population générale de galaxie à redshift z~3 pour la première fois avec une grande précision. Je ai quantifié le regroupement de galaxie en estimation et la modélisation de la fonction de corrélation projetée (espace réel) à deux points, pour une population générale de 3022 galaxies. Je ai prolongé les mesures de regroupement à la luminosité et des sous-échantillons de masse sélectionné stellaires. Mes résultats montrent que la force de regroupement de la population générale de la galaxie ne change pas de redshift z~3,5 à z~2,5, mais dans les deux redshift va plus lumineux et des galaxies plus massives sont plus regroupées que les moins lumineux (massives). En utilisant la distribution d'occupation de halo (HOD) formalisme je mesuré une masse moyenne de halo hôte au redshift z~3 significativement plus faible que les masses halo moyens observés à faible redshift. Je ai conclu que la population de formation d'étoiles observé des galaxies à z~3 aurait évolué dans le massif et lumineux la population de galaxies au z=0. Aussi, je interpréter les mesures de regroupement en termes de biais de galaxies à grande échelle linéaire. Je trouve que ce est nettement plus élevé que le biais des galaxies redshift intermédiaire et faible. Enfin, je ai calculé le ratio-stellaire Halo masse (SHMR) et l'efficacité intégrée de formation d'étoiles (ISFE) pour étudier l'efficacité de la formation des étoiles et l'assemblage masse stellaire. / This thesis focuses on the study of the properties and evolution of galaxy clustering for galaxies in the redshift range 2<z<5 from the VIMOS Ultra Deep Survey (VUDS), which is the largest spectroscopic galaxy survey at z>2. I was able to measure the spatial distribution of a general galaxy population at redshift z~3 for the first time with a high accuracy. I quantified the galaxy clustering by estimating and modelling the projected (real-space) two-point correlation function, for a general population of 3022 galaxies. I extended the clustering measurements to the luminosity and stellar mass-selected sub-samples. My results show that the clustering strength of the general galaxy population does not change significantly from redshift z~3.5 to z~2.5, but in both redshift ranges more luminous and more massive galaxies are more clustered than less luminous (massive) ones. Using the halo occupation distribution (HOD) formalism I measured an average host halo mass at redshift z~3 significantly lower than the observed average halo masses at low redshift. I concluded that the observed star-forming population of galaxies at z~3 might have evolved into the massive and bright (Mr<-21.5) galaxy population at redshift z=0. Also, I interpret clustering measurements in terms of a linear large-scale galaxy bias. I find it to be significantly higher than the bias of intermediate and low redshift galaxies. Finally, I computed the stellar-to-halo mass ratio (SHMR) and the integrated star formation efficiency (ISFE) to study the efficiency of star formation and stellar mass assembly. I find that the integrated star formation efficiency is quite high at ~16% for the average galaxies at z~3.
100

The centres of galaxy group dark matter halos

Neault, Marie-Pier 11 1900 (has links)
Galaxies, galaxy groups and galaxy clusters are embedded in large dark matter halos. Most galaxies in the local universe are found in the galaxy group environment. Locating the centres of galaxy groups is crucial in order to study their properties such as their halo masses. It is often assumed that the most massive galaxy (or brightest galaxy) resides at the centre of the gravitational potential. With the aim of evaluating the validity of this paradigm in galaxy groups, we used two different methods to probe the centres of galaxy group halos: the weak gravitational lensing and dynamical methods. We use these two methods to determine the best definition of galaxy group centres. Our sample is composed of 49 optically (spectroscopically) selected groups and 36 high quality X-ray-selected groups. In total our sample is composed of 78 distinct groups in the redshift range 0.1 < z < 0.9 from the GEEC sample. Our weak lensing analysis suggests that the weighted centre is a better definition than the most massive galaxy position. We address the question of whether or not the result is significantly different for X-ray and optically selected systems. For optically selected systems, the weighted centre is a significantly better assumption of the group centre than the most massive galaxies position. For the X-ray selected groups, the weighted centre and the most massive galaxy appear to trace the centre equally well, although the best definition is the location of the peak in X-ray emission. We evaluate, for the first time, the impact of dynamically complex groups on weak lensing analysis. Once we removed dynamically complex systems from our sample, the lensing signals for all centre definitions are in better agreement suggesting that groups with large offsets between the centre definitions are unevolved systems. For the dynamical method, velocity dispersion profiles suffer from large uncertainties and, therefore, we are unable to place any constraint on the centre definition from this technique. / Thesis / Master of Science (MSc)

Page generated in 0.0382 seconds