• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

GALVANNEALING OF DUAL PHASE STEELS

Asgari, Moslehabadi Hamed 04 1900 (has links)
<p>The high strength and ductility of dual phase (DP) steels makes them ideal for use in the automotive industry. However, to be used in automotive exposed parts galvanizing (GI) and galvannealing (GA) processes are essential to provide corrosion protection. Galvannealing of dual phase steels has three major steps: i) heat treatment of the steel strip to obtain a suitable substrate microstructure and reduce iron oxides at the substrate surface ii) dipping of the steel strip in the zinc bath to obtain a soft and ductile metallic zinc coating on the steel and iii) heat treatment of the coated substrate in the galvannealing furnace after removal from the zinc bath to form an Fe-Zn intermetallic coating on the steel.</p> <p>The major challenges in galvannealing of dual phase steels are selective oxidation of the alloying elements used in DP steels such as Mn which may result in poor galvannealed coatings, and galvannealing time and temperature that can affect the microstructure and formation kinetics of galvannealed coating. Both of these issues have been investigated in this research using three industrial steel substrates: EDDS (Extra Deep Drawing Steel), CMn (Carbon Manganese) and DP590 (Dual Phase).The concentration of carbon, manganese and some other alloying elements was different in these substrates.</p> <p>The effect of process atmosphere oxygen partial pressure on oxidation was determined for all experimental steels at dew point (dp) -30°C using a N<sub>2</sub>-5%H<sub>2</sub> process atmosphere. The steel chemistry and oxygen partial pressure of the process atmosphere affected oxide thickness and morphology. For all alloys the lowest oxygen partial pressure process atmosphere resulted in the highest concentration and thickest oxide layer of Mn at the surface of dual phase steel (DP590). Also, the lowest segregation of Mn and thinnest oxide layer of Mn at the surface was obtained for the EDDS steel. The predominant oxide morphology observed at the surface of the DP590 steel comprised large oxide nodules or thick oxide films with irregular shaped/faceted nodules whereas the other two steels had an oxide morphology that generally comprised spherical cap shaped nodules at grain boundaries.</p> <p>Four galvannealing times (10, 20, 30 and 40 s) and three galvannealing temperatures (480, 500 and 520 °C) were used to evaluate the effects of GA time/temperature on the microstructural evolution and formation kinetics of coating as a function of substrate Mn content. By increasing the galvannealing time and temperature, it was observed that for all steels, the Fe-Zn growth rate (alloying rate), thickness of gamma layer (Γ-Fe<sub>3</sub>Zn<sub>10</sub>) and iron content of the galvannealed coating were increased. It was concluded that galvannealing kinetics of DP and CMn steels at 480°C are faster than those of the EDDS steel. However, the galvannealing kinetics of DP and CMn steels at 500 and 520°C were relatively similar to each other and insignificantly different than those of EDDS. Accelerated galvannealing kinetics of higher Mn containing steels in this research, i.e. DP and CMn, could be ascribed to the presence of thicker oxide film/larger oxide particles at the surface that may have been reduced by aluminothermic reduction and accelerated inhibition layer breakdown. Considering the alloying rate and chemistry of the GA coating, it was found that 500 and 520 °C are not suitable industrial galvannealing temperatures for experimental steels in this research.</p> / Master of Applied Science (MASc)
2

Effet de l’atmosphère du recuit de recristallisation sur l’oxydation sélective et les réactions GalvAnnealing d’un acier TRIP MnAl / Effect of recrystallization annealing atmosphere on the selective oxidation and GalvAnnealing behavior of a TRIP MnAl steel

Paunoiu, Andreea 18 January 2018 (has links)
Les revêtements GalvAnnealed (GA), constitués de phases Fe-Zn, sont utilisés pour protéger les aciers contre la corrosion. Ces revêtements sont réalisés en trois étapes principales: le recuit de recristallisation, l'immersion dans un bain de zinc contennant de 0,11 à 0,13% poids d'aluminium et le traitement thermique du revêtement de zinc. Lors de la première étape, l'oxydation sélective des éléments d'alliage se produit à la surface de l'acier. Dans le cas des aciers chargés en éléments d'alliage (TRansformation Induced-Plasticity), les oxydes sélectifs sont connus pour créer des problèmes de réactivité entre l'acier et le zinc liquide. L'état d'oxydation sélective dépend du point de rosée (PR) de l'atmosphère de recuit. La formation du revêtement Fe-Zn implique des réactions complexes: la formation de la couche d'inhibition, sa rupture, la consommation du zinc et l'enrichissement en fer. Dans ce travail, l'effet du PR de l'atmosphère de recuit sur l'oxydation sélective et la formation du revêtement sur un acier TRIP MnAl a été étudié. Il a été montré que l'atmosphère de recuit influe principalement sur la morphologie (films ou nodules) et la localisation des oxydes par rapport à la surface de l'acier (externe / interne). Les résultats expérimentaux sont en accord avec les calculs thermodynamiques. Indépendamment du PR, la couche d'inhibition est constituée de deux phases, δ (FeZn7) et Fe2Al5Znx. Les oxydes externes formés lors du recuit sont incrustés dans ces phases. La couche d'inhibition ne bloque les réactions Fe-Zn que temporairement. Lors du traitement galvannealing, la rupture de la couche d'inhibition se produit par deux mécanismes réactionnels qui dépendent de l'état d'oxydation sélective. Globalement, les films d'oxyde (bas PR) incrustés dans la couche d'inhibition ont un effet retardateur sur les réactions Fe-Zn par rapport aux oxydes nodulaires (haut DP). / GalvAnnealed (GA) coatings, composed of Fe-Zn phases, are used to protect steels against corrosion. These coatings are produced in three main steps, namely recrystallization annealing, immersion in a zinc bath with 0.11 to 0.13 wt.% aluminum and heat treatment of the zinc coating. In the first step, the selective oxidation of the alloying elements occurs at the steel surface. In the case of high alloyed steels (e.g. TRansformation-Induced Plasticity), the selective oxides are known to be detrimental for the reactions between the steel substrate and liquid zinc. The selective oxidation state depends on the dew point (DP) of the annealing atmosphere. The coating formation involves complex reactions: the inhibition layer formation, its breakdown, the liquid zinc consumption and the iron enrichment. In this work, the effect of the DPof the annealing atmosphere on the selective oxidation and the coating formation on a TRIP MnAl steel was investigated. It was shown that the annealing atmosphere mainly affects the morphology (films or nodules) and the location of the selective oxides with respect to the steel surface (external / internal). The experimental results are in line with the thermodynamic calculations. The inhibition layer is composed of two phases, δ (FeZn7) and Fe2Al5Znx, irrespective of the DP. In addition, it contains the external oxides formed during the first step. The inhibition layer hinders the Fe-Zn reactions only temporarily. Depending on the selective oxidation state, during galvannealing treatment the inhibition layer rupture occurs by two different reaction mechanisms. Globally, the oxide films (low DP) embedded in the inhibition layer, delay the Fe-Zn reactions compared to nodular oxides (high DP).
3

Mechanisms and kinetics of the galvannealing reactions on Ti IF steels / Mécanismes et cinétiques des réactions de galvannealing dans des aciers IF Ti

Zapico Alvarez, David 12 February 2014 (has links)
Les revêtements galvanisés alliés sont produits par immersion à chaud d’une bande d'acier dans un bain de zinc fondu à environ 460 °C, saturé en fer et contenant de faibles quantités d'aluminium (de 0,1 à 0,135% poids), suivie d’un traitement thermique (jusqu'à des températures voisines de 500-530 °C pendant environ 10 s) afin de déclencher les réactions d'alliation entre le fer et le zinc. La microstructure finale de ce type de revêtement est composée d'une succession de couches stratifiées de phases Fe-Zn et ses propriétés d'usage sont directement liées à la distribution de ces phases dans le revêtement. Les paramètres process à appliquer sur ligne industrielle doivent donc être optimisés pour obtenir la microstructure de revêtement souhaitée avec des coûts minimaux. Le développement d'un tel revêtement passe par différentes réactions complexes : la formation de la couche d'inhibition, la rupture de cette couche, la consommation du zinc liquide et l'enrichissement en fer du revêtement solide. Les cinétiques de ces réactions doivent être étudiées et modélisées séparément afin de contrôler avec précision l'évolution du revêtement au cours du cycle thermique. Dans ce travail, les deux premières réactions ont été étudiées dans le cas des aciers IF Ti. La cinétique de formation de la couche d'inhibition est extrêmement rapide et n’a par conséquent pas été étudiée. L'attention a été portée sur la nature de cette couche et sur les mécanismes responsables de sa formation. Il a été démontré que la couche d'inhibition formée dans des bains classiques pour la production de ces revêtements est composée d'une première couche très mince de Fe2Al5Znx (20-30 nm) sur la surface de l’acier et d’une seconde couche plus épaisse de δ (FeZn7) (environ 200 nm) au-dessus. Lorsque l'acier est immergé dans le bain de zinc, la dissolution du premier dans le second conduit à une sursaturation en fer à l'interface solide / liquide. Une très fine couche de Fe2Al5Znx métastable germe alors sur la surface de l'acier favorisée par des relations préférentielles d’épitaxie avec la ferrite. Par la suite, une couche de δ germe sur la couche de Fe2Al5Znx ce qui permet à la microstructure finale de devenir thermodynamiquement stable. L'effet de la teneur en aluminium du bain sur la nature de la couche d'inhibition a également été étudié. Quand la teneur en aluminium du bain diminue, la couche de Fe2Al5Znx devient discontinue car cette phase devient plus métastable et sa germination sur la surface de l'acier moins probable. Cette étape d’inhibition n'est que transitoire et un traitement thermique prolongé conduira à la rupture de la couche d'inhibition et au développement des réactions Fe-Zn. Le mécanisme de rupture, contrôlé par la diffusion du zinc dans les joints de grains de l'acier, peut être expliqué à l'aide du diagramme de phase ternaire Al-Fe-Zn et résumé en deux étapes : la disparition de la couche de Fe2Al5Znx à l'interface couche d’inhibition / acier résultant de l’enrichissement de cette interface en zinc, et la germination de la phase Г (Fe3Zn10) aux joints de grains de l'acier lorsque la concentration en zinc y devient suffisante. C’est cette germination qui va provoquer localement la rupture de la couche d’inhibition. La cinétique de cette réaction dépend fortement de la composition chimique de l'acier IF Ti et de la teneur en aluminium du bain. D'une part, il apparaît que l'effet de la composition chimique de l'acier sur la cinétique de rupture d'inhibition est contrôlé par la compétition entre deux phénomènes opposés : la vitesse de diffusion du zinc dans les joints de grains de l'acier et la capacité de l'acier à y accumuler les atomes de zinc. D'autre part, la diminution de la teneur en aluminium du bain favorise la discontinuité de la couche de Fe2Al5Znx, ce qui accélère la rupture de la couche d'inhibition car le zinc est supposé diffuser plus rapidement dans δ que dans Fe2Al5Znx. / Hot-Dip GalvAnnealed (HDGA) coatings are produced by the immersion of the steel strip into an iron-saturated liquid zinc bath at around 460 °C containing small amounts of aluminium (from 0.1 to 0.135 wt.%, normally) and its subsequent heating (up to temperatures around 500-530 °C for about 10 s, typically) in order to trigger the alloying reactions between iron and zinc. The final microstructure of this kind of coatings is composed of a sequence of stratified Fe-Zn phase layers and its in-use properties are directly related to the phase distribution within the coating. The process parameters to be performed in industrial lines must therefore be optimized in order to obtain a successful coating microstructure with the minimum costs. The development of such a coating passes through different and complex reactions: the inhibition layer formation, the inhibition layer breakdown, the liquid zinc consumption and the iron enrichment of the solid coating. The kinetics accounting for these reactions must be studied and modelled separately in order to accurately control the evolution of the coating along the heat treatment performed in the industrial line. In the present work, the two first reactions were investigated in the case of Ti IF steel grades. The kinetics of the inhibition layer formation is extremely fast and has therefore not been investigated in detail. Concerning this reaction, the focus was given to the nature of this inhibition layer and to the mechanisms accounting for its formation. It has been found that the inhibition layer formed in typical baths for galvannealed coatings production is composed of a very thin layer of the Fe2Al5Znx phase (20-30 nm) on the steel surface and a thicker layer of the δ (FeZn7) phase (around 200 nm) on its top. As the steel strip enters the zinc bath, iron dissolution from the former into the latter leads to an iron supersaturation at the solid / liquid interface. As a result, a very thin layer of metastable Fe2Al5Znx nucleates on the steel surface favoured by preferential epitaxial relationships with ferrite. Subsequently, δ nucleates on the Fe2Al5Znx layer allowing the final microstructure of the inhibition layer to become thermodynamically stable. The effect of the bath aluminium content on the nature of this inhibiting structure has also been studied. As the bath aluminium content is lowered, the Fe2Al5Znx layer becomes discontinuous: the lower the bath aluminium content is, the higher the metastability of Fe2Al5Znx is and the less probable its nucleation on the steel surface is. The inhibition state is only transient and continued heat treatment will lead to the inhibition layer breakdown and the development of the further Fe-Zn alloying reactions. The breakdown mechanism, controlled by the diffusion of zinc towards the steel grain boundaries, can be explained using the Al-Fe-Zn ternary phase diagram and summarized in two steps: the disappearance of the Fe2Al5Znx layer at the inhibition layer / steel interface as a result of the enrichment of this interface in zinc, and the local nucleation of the Г (Fe3Zn10) phase at the steel grain boundaries, breaking the inhibition layer off, when the zinc concentration at these locations becomes high enough. The kinetics accounting for this reaction strongly depends on the Ti IF steel chemical composition and the bath aluminium content. On the one hand, it has been found that the effect of the steel chemical composition on the inhibition layer breakdown kinetics would be ruled by the competition between two opposite phenomena: the rate of zinc diffusion at the steel grain boundaries and the ability of the steel to accumulate the zinc atoms at these locations On the other hand, decreasing the bath aluminium content favours the discontinuity of Fe2Al5Znx, which accelerates the inhibition layer breakdown as zinc is expected to diffuse faster through δ than through Fe2Al5Znx.

Page generated in 0.0685 seconds