• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 15
  • 8
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 94
  • 94
  • 48
  • 27
  • 27
  • 26
  • 24
  • 19
  • 13
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formable dual-phase steels

Cochrane, Hal January 1989 (has links)
No description available.
2

Correlation between Fatigae of Automotive Wheel Centre - Discs and Hour-glass Laboratory Specimen

McGrath, PJ, Hattingh, DG, James, MN 29 December 2009 (has links)
Fatigue testing of complete automotive wheels is carried out on rotary bendmachines. These commercial mac hin e s s imulnt e h ar d - c o rn e rin g c o n ditio n s an d mainly testthefatigue performance of the central section of an automotive wheel' . This paper develops a relationship for predicting the fatigue performance of the wheel,based onfatigue tests of hourglass specimens machinedfrom centre discs. This is more economical of material and, in principle, also allows the effect on fatigue performance of change inproduction parameters or starting alloy to be assess ed, by c o n sid e rin g a limit e d numb e r of w h e e I blanks take n from each stage of the production process. This is p ote ntially a v ery u s eful to ol in optimisin g mat e rial selection, wheel design and production parameters. The p arti c ular c e ntr e - dis c un d e r c o n s id e r atio n i s manufactured from a dual-phas e ste eI (DP S)2 . Good c o rr elatio n w as achie v e d b e tw e e n S - lr.' data fr o m th e automotiv e w he els qnd that from the ho urglas s (H G) specimens.
3

Caractérisation et prévision des structures en bandes dans les aciers Dual-Phase : lien avec les propriétés d'endommagement / Characterization and prevision of banded structures on Dual-Phase steels : link to the damage properties

Krebs, Benoit 22 October 2009 (has links)
Les aciers Dual-Phase constituent plus de 50% du poids des automobiles récentes. Ils associent une très bonne formabilité à une haute limite à rupture. Cet excellent compromis mécanique résulte de leur microstructure biphasée, constituée d’une phase martensitique dure englobée dans une matrice ferritique ductile. Ces aciers contiennent principalement du carbone et du manganèse. Les ségrégations chimiques formées lors de la coulée créent, à l’issue des traitements thermo-mécaniques ultérieurs, des structures en bandes ferrito-martensitiques néfastes aux propriétés d’endommagement. Les principaux objectifs de cette thèse étaient de comprendre les mécanismes de formation des bandes, et de relier leurs caractéristiques (intensité, topologie…) aux paramètres du procédé. Des cycles thermiques inspirés du procédé industriel ont été réalisés sur des échantillons d’une nuance représentative (Fe-0.15%C-1.5%Mn). Plusieurs techniques expérimentales (dilatométrie, microscopies, sonde électronique, EBSD…) ont été mises en oeuvre pour comprendre les mécanismes de développement des microstructures. Des outils de visualisation et de quantification de la topologie bidimensionnelle et tridimensionnelle des microstructures ont été développés, permettant d'évaluer l’influence des paramètres du traitement thermique sur la microstructure finale. Pour différentes topologies, les champs de contraintes locaux responsables de l’endommagement ont été estimés à l’aide de simulations par éléments finis. Les informations recueillies permettront d’alimenter des modélisations numériques visant à reproduire la genèse des microstructures et à prévoir leur comportement mécanique en grande déformation / Modern cars are composed in weight of more than 50% of Dual-Phase steels. They combine a very good formability and high level of strength. This excellent mechanical accommodation is due to their two-phase microstructure, composed of hard martensite phase in a ductile ferrite matrix. These steels contain principally carbon and manganese. Chemical segregations developed during the casting create, after subsequent thermo-mechanical treatment, banded structures of ferrite and martensite unfavorable for damaging properties. Main objectives of this thesis were to understand mechanism of bands formation, and link their characteristic (intensity, topology…) to the process parameters. Some heat treatment routes derived of the industrial process were realized on sample of representative grade (Fe-0.15%C-1.5%Mn). Several experimental techniques (dilatometry, microscopy, electronic probe, EBSD…) were operating to understand mechanism of microstructures development. Some tool of visualization and quantification of the two-dimensional and three-dimensional were developed, enable to evaluate the influence of heat treatment parameters on the final microstructure. For different topologies, the local stress fields liable of damaging were estimated with the support of finite elements simulations. The collected information will allow loading numerical modeling with the purpose to reproduce microstructures genesis and to predict their mechanical behavior in high strain
4

GALVANNEALING OF DUAL PHASE STEELS

Asgari, Moslehabadi Hamed 04 1900 (has links)
<p>The high strength and ductility of dual phase (DP) steels makes them ideal for use in the automotive industry. However, to be used in automotive exposed parts galvanizing (GI) and galvannealing (GA) processes are essential to provide corrosion protection. Galvannealing of dual phase steels has three major steps: i) heat treatment of the steel strip to obtain a suitable substrate microstructure and reduce iron oxides at the substrate surface ii) dipping of the steel strip in the zinc bath to obtain a soft and ductile metallic zinc coating on the steel and iii) heat treatment of the coated substrate in the galvannealing furnace after removal from the zinc bath to form an Fe-Zn intermetallic coating on the steel.</p> <p>The major challenges in galvannealing of dual phase steels are selective oxidation of the alloying elements used in DP steels such as Mn which may result in poor galvannealed coatings, and galvannealing time and temperature that can affect the microstructure and formation kinetics of galvannealed coating. Both of these issues have been investigated in this research using three industrial steel substrates: EDDS (Extra Deep Drawing Steel), CMn (Carbon Manganese) and DP590 (Dual Phase).The concentration of carbon, manganese and some other alloying elements was different in these substrates.</p> <p>The effect of process atmosphere oxygen partial pressure on oxidation was determined for all experimental steels at dew point (dp) -30°C using a N<sub>2</sub>-5%H<sub>2</sub> process atmosphere. The steel chemistry and oxygen partial pressure of the process atmosphere affected oxide thickness and morphology. For all alloys the lowest oxygen partial pressure process atmosphere resulted in the highest concentration and thickest oxide layer of Mn at the surface of dual phase steel (DP590). Also, the lowest segregation of Mn and thinnest oxide layer of Mn at the surface was obtained for the EDDS steel. The predominant oxide morphology observed at the surface of the DP590 steel comprised large oxide nodules or thick oxide films with irregular shaped/faceted nodules whereas the other two steels had an oxide morphology that generally comprised spherical cap shaped nodules at grain boundaries.</p> <p>Four galvannealing times (10, 20, 30 and 40 s) and three galvannealing temperatures (480, 500 and 520 °C) were used to evaluate the effects of GA time/temperature on the microstructural evolution and formation kinetics of coating as a function of substrate Mn content. By increasing the galvannealing time and temperature, it was observed that for all steels, the Fe-Zn growth rate (alloying rate), thickness of gamma layer (Γ-Fe<sub>3</sub>Zn<sub>10</sub>) and iron content of the galvannealed coating were increased. It was concluded that galvannealing kinetics of DP and CMn steels at 480°C are faster than those of the EDDS steel. However, the galvannealing kinetics of DP and CMn steels at 500 and 520°C were relatively similar to each other and insignificantly different than those of EDDS. Accelerated galvannealing kinetics of higher Mn containing steels in this research, i.e. DP and CMn, could be ascribed to the presence of thicker oxide film/larger oxide particles at the surface that may have been reduced by aluminothermic reduction and accelerated inhibition layer breakdown. Considering the alloying rate and chemistry of the GA coating, it was found that 500 and 520 °C are not suitable industrial galvannealing temperatures for experimental steels in this research.</p> / Master of Applied Science (MASc)
5

Effect of Annealing Atmosphere on the Galvanizing Behaviour of a Dual Phase Steel

Khondker, Rubaiyat 07 1900 (has links)
<p> The selective surface oxidation of alloying elements such as Mn can cause dual phase (DP) steel wettability problems by liquid Zn during continuous galvanizing. It is well known that process parameters, such as the annealing atmosphere %H2 and dew point, can affect surface and subsurface oxidation. The purpose of this research was to study the effect of the annealing atmosphere to determine the optimum DP steel surface that would result in better reactive wetting by zinc. In particular, the evolution of the surface phases and structures during the continuous galvanizing annealing cycle were studied. It was shown that the internal I external oxidation behavior of the alloying elements of DP steel (e.g. Mn and Mo) at the surface and subsurface can be controlled by changing process parameters (dew point and H2/N2 ratio) and that some segregation of elements is unavoidable but can result in good reactive wetting by liquid galvanizing alloys. A transition from external to internal oxidation was observed when the oxidation potential (pH20ipH2) of the annealing atmosphere was increased from 0.00844 to 0.03451. Despite the presence of 9-19 wt% Mn as MnO in the pre-dipped steel surface, the coatings exhibited good adhesion and a well developed Fe2Als inhibition layer at the coating I substrate interface for all experimental annealing atmospheres as a result of reactive wetting. This is attributed to aluminothermic reduction of manganese oxide by aluminum present in the liquid galvanizing alloy. </p> / Thesis / Master of Applied Science (MASc)
6

Modélisation par champ de phases de la croissance de la ferrite allotriomorphe dans les aciers Fe-C-Mn / Phase field modeling of allotriomorphic ferrite growth in Fe-C-Mn steels

Viardin, Alexandre 08 April 2010 (has links)
La ferrite allotriomorphe est une des morphologies de la ferrite dont la répartition spatiale influe fortement sur les propriétés mécaniques dans les aciers dual-phase. En fonction des traitements qu'ils subissent, la ferrite peut s'y répartir suivant les bandes de ségrégation en manganèse, issues de l'étape de solidification. Pour établir le rôle que joue le processus de croissance de la ferrite allotriomorphe sur la mise en place de la structure en bandes, nous avons développé un modèle de champ de phases possédant deux spécificités originales, imposées par le problème. D'une part, ce modèle est capable de reproduire les différents régimes cinétiques observés dans les alliages ternaires Fe-C-X, pilotés par la présence concomittante du carbone diffusant rapidement,et d'un élément substitutionnel X diffusant lentement. Nous avons ainsi mis en évidence la transition d'un régime initial rapide de paraéquilibre vers une croissance lente en orthoéquilibre, en bon accord avec des résultats expérimentaux de la littérature. D'autre part, notre modèle incorpore de manière économe la présence des joints de grains austénitiques, dont le rôle dans l'élimination des structures en bande est souligné par nos calculs. Nous observons ainsi qu'il existe un seuil d'intensité deségrégation en manganèse en dessous duquel le mouillage de la ferrite le long des joints de grain de plus grande énergie peut contrecarrer la croissance dans les bandes ségrégées négativement / The growth of allotriomorphic ferrite plays a major role in the formation of martensite bands in Dual-Phase steels. We have thus developed a phase field model to study the ferritic growth in different ternary Fe-C-X alloys, incorporating two necessary features. First, we have paid a particular attention to recover the different growth regimes due to the huge difference between the diffusion rates of Cand X substitutional species. Our calculations have exhibited a transition from fast paraequilibrium to slow orthoequilibrium in good agreement with experimental measurements in the literature. Second, austenite grain boundaries have been included in the model because they can conterbalance the manganese segregation bands, as shown in our calculations. Indeed, our results show that the bands can be broken bythe wetting of ferrite along the austenite grain boundaries, provided that the segregation is below a threshold value, and provided that the grain boundary energies are sufficiently high
7

Weldability of a Dual-Phase Sheet Steel by the Gas Metal Arc Welding Process

Burns, Trevor January 2009 (has links)
Dual-phase (DP) sheet steels have recently been used for automotive manufacturing to reduce vehicle weight and improve fuel economy. Dual-phase steels offer higher strength without reduced formability when compared to conventional high strength low alloy (HSLA) steels and so thinner gauge DP sheet steel can be used to meet the same design requirements. The DP steel microstructure is comprised of dual-phase mixture hard martensite particles, which provide strength, in a soft ferrite matrix, which provides ductility. Fusion welding processes, such as gas metal arc welding (GMAW), are used to join DP sheet steels; however, the heat input from fusion welding can cause the martensite islands to decompose into softer islands of tempered martensite. This can reduce the joint efficiency and cause premature localized necking in the region where tempered martensite forms. The weldability of coated 1.65 mm Cr Mo DP600 (dual-phase 600 MPa) sheet steel welded using the pulsed gas metal arc welding (GMAW-P) process was assessed. Processes with a range of GMAW P weld heat inputs were developed to make full penetration bead-on-plate welds that had similar bead geometry. The range of weld heat input was between 193 J/mm and 347 J/mm. Uniaxial transverse weld tensile tests of welds that were made at high heat input fractured in the heat affected zone (HAZ), welds that were made at low heat input fractured in the base metal (BM), which is most desirable, and at intermediate welding heat inputs, fracture locations were mixed. Heat input was compared to corresponding weld HAZ half-width measurements and it was shown that as heat input increased, HAZ half-width increased as well; this followed an expected linear trend. The ultimate tensile strength (UTS) was not diminished in specimens that exhibited BM fracture and 100% joint efficiency was achieved. Welded DP600 specimens that failed in the HAZ had minimal (< 5%) reduction of UTS. During the welding process development phase, the same range of heat input was used to make bead-on-plate full penetration welds onto coated 1.80 mm HSLA (high strength low alloy) sheet steel to assess its weldability. It was found that all of the welds fractured in the BM during uniaxial transverse weld tensile testing and, therefore, had achieved 100% joint efficiency. It was shown that by increasing the strength grade of DP sheet steel to DP780 and DP980, 100% joint efficiency was not retained. To better understand why high heat input welding caused HAZ fracture, low heat and high heat input welds that had consistently fractured in the BM and HAZ, respectively, were used to assess the differences between BM and HAZ fracture mechanisms. Fractographic analysis of BM and HAZ fracture surfaces of the dual-phase steels showed that fracture had occurred due to micro-void coalescence for both types of failure; however, the HAZ fracture had greater reduction of cross-sectional area and the surface had more numerous and smaller shear tearing ledges. Examination of the microstructure showed that there were decomposed martensite islands in the region the HAZ fracture; these likely increased ductility and led to a more significant tri-axial stress state. However, decomposed martensite was also found in the HAZ of welds that had BM fracture. The low and high heat input welds had similar reduction of martensite percentage (~3 – 4%) in the subcritical (SC) region of the HAZ; immediately below the Ac1 temperature where transformation from a BCC ferrite to FCC austenite occurs. Each weld HAZ was assessed with an average through-thickness microhardness (ATTH) profile. Four distinct regions of hardness were identified: hard intercritical (IC), which was formed by heating between Ac1 and Ac3 temperatures, soft subcritical (S SC), hard subcritical (H SC), and base-metal (BM). The width of the S-SC was slightly larger (~10%) for the HAZ fracture weld; however, the degree of softening (~8 – 11 VHNATTH/200g) compared to BM hardness was similar for both. It appeared that HAZ fracture could be shifted to the BM by reducing the width of the S SC so that the surrounding hard IC (+40 – 50 VHNATTH/200g) and H-SC (+5 – 10 VHNATTH/200g) could support the S SC and prevent a tri-axial stress state from developing; this is similar to increased strength of brazed joints caused by optimal gap width. Using this knowledge base, new welds were made onto different sheet thickness (1.20 mm and 1.80 mm) Cr-Mo DP600 sheet steels and onto higher strength grades of 1.20 mm Cr-Mo DP780 and 1.20 mm Mn –Si DP980 sheet steels. These were compared with the heavily studied 1.65 mm Cr Mo DP600 sheet steel described above. The 1.80 mm DP600 sheet steel (welded with the same range of heat input) fractured in the BM during all uniaxial transverse weld tensile tests; this was caused by a 4% increase in sheet thickness. The majority of thinner 1.20 mm welds fractured in the HAZ; there was one BM fracture for the DP600 sheet steel. Only the DP980 had a significant drop in UTS (~28%), and the DP600 and DP780 approached 100% joint efficiency (based on the UTS). The same distinct regions of hardness were observed for Cr Mo DP600 and Cr-Mo DP780. The Mn Si DP980 did not exhibit an H SC and had a significantly wider S SC (~80% wider) when compared to welds of similar heat input and sheet thickness. This suggested that the presence of an H SC region could improve joint efficiency. It also suggested that material chemistry played an important role in reducing the extent of softening during welding; however, the martensite percentage for the DP600, DP780, and DP980 were different (approximately 7.5%, 20%, and 46%, respectively) and this could also have affected the observed S SC widths. It was concluded that GMAW-P welded DP600 sheet steel shifted from a HAZ fracture to a more desirable BM fracture location during uniaxial transverse weld tensile testing as the S-SC region of hardness was narrowed. A narrow S-SC was supported by the adjacent hard IC and H-SC regions, which limited diffuse necking in the vicinity of the S-SC region. Diffuse necking continued to thin out material in the BM region, where there was a greater reduction in cross-sectional area prior to the onset of localized necking, and, therefore, the BM entered a state of higher stress than the S-SC and failed once it reached UTS. This was not observed for a higher strength grade of DP780 sheet steel, which had higher degree of softening, because, diffuse necking was not sufficient to reduce the BM cross-sectional area and hence the level of stress in the S-SC reached the UTS before the UTS was reached in the BM.
8

Weldability of a Dual-Phase Sheet Steel by the Gas Metal Arc Welding Process

Burns, Trevor January 2009 (has links)
Dual-phase (DP) sheet steels have recently been used for automotive manufacturing to reduce vehicle weight and improve fuel economy. Dual-phase steels offer higher strength without reduced formability when compared to conventional high strength low alloy (HSLA) steels and so thinner gauge DP sheet steel can be used to meet the same design requirements. The DP steel microstructure is comprised of dual-phase mixture hard martensite particles, which provide strength, in a soft ferrite matrix, which provides ductility. Fusion welding processes, such as gas metal arc welding (GMAW), are used to join DP sheet steels; however, the heat input from fusion welding can cause the martensite islands to decompose into softer islands of tempered martensite. This can reduce the joint efficiency and cause premature localized necking in the region where tempered martensite forms. The weldability of coated 1.65 mm Cr Mo DP600 (dual-phase 600 MPa) sheet steel welded using the pulsed gas metal arc welding (GMAW-P) process was assessed. Processes with a range of GMAW P weld heat inputs were developed to make full penetration bead-on-plate welds that had similar bead geometry. The range of weld heat input was between 193 J/mm and 347 J/mm. Uniaxial transverse weld tensile tests of welds that were made at high heat input fractured in the heat affected zone (HAZ), welds that were made at low heat input fractured in the base metal (BM), which is most desirable, and at intermediate welding heat inputs, fracture locations were mixed. Heat input was compared to corresponding weld HAZ half-width measurements and it was shown that as heat input increased, HAZ half-width increased as well; this followed an expected linear trend. The ultimate tensile strength (UTS) was not diminished in specimens that exhibited BM fracture and 100% joint efficiency was achieved. Welded DP600 specimens that failed in the HAZ had minimal (< 5%) reduction of UTS. During the welding process development phase, the same range of heat input was used to make bead-on-plate full penetration welds onto coated 1.80 mm HSLA (high strength low alloy) sheet steel to assess its weldability. It was found that all of the welds fractured in the BM during uniaxial transverse weld tensile testing and, therefore, had achieved 100% joint efficiency. It was shown that by increasing the strength grade of DP sheet steel to DP780 and DP980, 100% joint efficiency was not retained. To better understand why high heat input welding caused HAZ fracture, low heat and high heat input welds that had consistently fractured in the BM and HAZ, respectively, were used to assess the differences between BM and HAZ fracture mechanisms. Fractographic analysis of BM and HAZ fracture surfaces of the dual-phase steels showed that fracture had occurred due to micro-void coalescence for both types of failure; however, the HAZ fracture had greater reduction of cross-sectional area and the surface had more numerous and smaller shear tearing ledges. Examination of the microstructure showed that there were decomposed martensite islands in the region the HAZ fracture; these likely increased ductility and led to a more significant tri-axial stress state. However, decomposed martensite was also found in the HAZ of welds that had BM fracture. The low and high heat input welds had similar reduction of martensite percentage (~3 – 4%) in the subcritical (SC) region of the HAZ; immediately below the Ac1 temperature where transformation from a BCC ferrite to FCC austenite occurs. Each weld HAZ was assessed with an average through-thickness microhardness (ATTH) profile. Four distinct regions of hardness were identified: hard intercritical (IC), which was formed by heating between Ac1 and Ac3 temperatures, soft subcritical (S SC), hard subcritical (H SC), and base-metal (BM). The width of the S-SC was slightly larger (~10%) for the HAZ fracture weld; however, the degree of softening (~8 – 11 VHNATTH/200g) compared to BM hardness was similar for both. It appeared that HAZ fracture could be shifted to the BM by reducing the width of the S SC so that the surrounding hard IC (+40 – 50 VHNATTH/200g) and H-SC (+5 – 10 VHNATTH/200g) could support the S SC and prevent a tri-axial stress state from developing; this is similar to increased strength of brazed joints caused by optimal gap width. Using this knowledge base, new welds were made onto different sheet thickness (1.20 mm and 1.80 mm) Cr-Mo DP600 sheet steels and onto higher strength grades of 1.20 mm Cr-Mo DP780 and 1.20 mm Mn –Si DP980 sheet steels. These were compared with the heavily studied 1.65 mm Cr Mo DP600 sheet steel described above. The 1.80 mm DP600 sheet steel (welded with the same range of heat input) fractured in the BM during all uniaxial transverse weld tensile tests; this was caused by a 4% increase in sheet thickness. The majority of thinner 1.20 mm welds fractured in the HAZ; there was one BM fracture for the DP600 sheet steel. Only the DP980 had a significant drop in UTS (~28%), and the DP600 and DP780 approached 100% joint efficiency (based on the UTS). The same distinct regions of hardness were observed for Cr Mo DP600 and Cr-Mo DP780. The Mn Si DP980 did not exhibit an H SC and had a significantly wider S SC (~80% wider) when compared to welds of similar heat input and sheet thickness. This suggested that the presence of an H SC region could improve joint efficiency. It also suggested that material chemistry played an important role in reducing the extent of softening during welding; however, the martensite percentage for the DP600, DP780, and DP980 were different (approximately 7.5%, 20%, and 46%, respectively) and this could also have affected the observed S SC widths. It was concluded that GMAW-P welded DP600 sheet steel shifted from a HAZ fracture to a more desirable BM fracture location during uniaxial transverse weld tensile testing as the S-SC region of hardness was narrowed. A narrow S-SC was supported by the adjacent hard IC and H-SC regions, which limited diffuse necking in the vicinity of the S-SC region. Diffuse necking continued to thin out material in the BM region, where there was a greater reduction in cross-sectional area prior to the onset of localized necking, and, therefore, the BM entered a state of higher stress than the S-SC and failed once it reached UTS. This was not observed for a higher strength grade of DP780 sheet steel, which had higher degree of softening, because, diffuse necking was not sufficient to reduce the BM cross-sectional area and hence the level of stress in the S-SC reached the UTS before the UTS was reached in the BM.
9

Influence of Alloy Elements on Selective Oxidation and Galvanizability of Dual Phase Steels

Wang, Hung-Ping 17 July 2008 (has links)
none
10

Study of Noise Suppression and Circuit Design of a Dual Phase-Locked Loop System

Tsai, Wen-shiou 23 July 2009 (has links)
This thesis is composed of three parts. In the first part, analysis and discussion of phase noise in phase-locked loop is made. Because OFDM upconverter requires high phase noise performance, we therefore study the mechanism of noise suppression in a proposed dual phase-locked loop, and then derive the formula to predict the circuit characteristics. In the second part, experiment and simulation of a dual phase-locked loop is performed for comparison. The experiment uses hybrid circuit combined with related equipment and components to measure the noise suppression characteristics in a dual phase-locked loop. The simulation relies on the component behavioral model in ADS. Comparison between simulation and measurement shows good agreement. In the third part, this thesis carries out a 1.55¡V2.3 GHz frequency synthesizer RFIC design for DVB up-down architecture using TSMC 0.18£gm CMOS process. The test results validate the chip design.

Page generated in 0.2885 seconds