• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the role of the Apicoplast in Plasmodium falciparum Gametocyte Stages

Wiley, Jessica Delia 22 May 2014 (has links)
Malaria continues to be a global health burden that affects millions of people worldwide each year. Increasing demand for malaria control and eradication has led research to focus on sexual development of the malaria parasite. Sexual development is initiated when pre-destined intraerythrocytic ring stage parasites leave asexual reproduction and develop into gametocytes. A mosquito vector will ingest mature gametocytes during a blood meal. Sexual reproduction will occur in the midgut, leading to the production of sporozoites that will migrate to the salivary gland. The sporozoites will be injected to another human host during the next blood meal consequently, transmitting malaria. Due to decreased drug susceptibility of mature gametocytes, more investigation of the biology and metabolic requirements of malaria parasites during gametocytogenesis, as well as during the mosquito stages, are urgently needed to reveal novel targets for development of transmission-blocking agents. Furthermore, increasing drug resistance of the parasites to current antimalarials, including slowed clearance rates to artemisinin, requires the discovery of innovative drugs against asexual intraerythrocytic stages with novel mechanisms of action. Here, we have investigated the role of the apicoplast during Plasmodium falciparum gametocytogenesis. In addition, we describe drug-screening studies that have elucidated a novel mode of action of one compound from the Malaria Box, as well as identified new natural product compounds that may be serve as starting molecules for antimalarial development. / Ph. D.
2

Effets des antipaludiques sur les stades hépatiques et les stades sexués (transmission) des plasmodies murines, Plasmodium yoelii / Effects of antimalarial drugs on hepatic stage and sexual stage (transmission) of a rodent parasite, Plasmodium yoelii

Mustfa, Kamla 16 December 2011 (has links)
Les objectifs de ce travail étaient d’évaluer qualitativement et quantitativement l’effet d’antipaludiques « classiques » (primaquine, Malarone®, amino-4-quinoléines) et « d’avenir » (artésunate, ferroquine, seuls ou associés) sur les formes hépatiques et les stades sexués du parasite responsable de la transmission du paludisme. Le modèle expérimental comprend des souris swiss femelle infestées par Plasmodium yoelii et Anopheles stephensi comme moustique vecteur. L’action de la Malarone® (proguanil-atovaquuone) sur les stades hépatiques est quasi totale et plus importante que celle, incomplète, de la primaquine, de la ferroquine ou de l’artésunate. Si les molécules précédentes (ferroquine, artésunate), prescrites à doses subcuratives, entraînent souvent une augmentation de la gamétocytogénèse, elles altèrent certains stades de gamétocytes et inhibent statistiquement chez le moustique la formation d’oocystes et leur nombre et, par là même, interviennent négativement dans la transmission du parasite. / The objective of this study is to evaluate qualitatively and quantitatively the effect of "classic" (primaquine, Malarone®, amino-4-quinoline) and "future" (artesunate, ferroquine, alone or associated) antimalarials on the liver forms and sexual stages of the parasite responsible for malaria transmission. The experimental model was : swiss mouse female infected with Plasmodium yoelii and Anophelesstephensi as the vector. The action of Malarone® (proguanil-atovaquuone) on liver stages is almost complete and more than that, incomplete, primaquine, the ferroquine or artesunate. If the previous molecules (ferroquine, artesunate), prescribed at subcurative doses, often lead to an increase in gametocytogenesis, they alter certain stages of gametocytes and statistically inhibit the formation of oocysts in the mosquito; hence, their number involve negatively in the transmission of the parasite.
3

Unfolded Protein Response in Malaria Parasite

Chaubey, Shwetha January 2014 (has links) (PDF)
Plasmodium falciparum is responsible for the most virulent form of human malaria. The biology of the intra-erythrocytic stage of P. falciparum is the most well studied as it is this stage that marks the clinical manifestation of malaria. To establish a successful infection, P. falciparum brings about extensive remodeling of erythrocytes, its host compartment. The infected erythrocytes harbor several parasite induced membranous structures. Most importantly, pathogenesis related structures termed knobs, which impart cytoadherence, appear on the cell surface of the infected erythrocytes. For bringing about such eccentric renovations in its host compartment, the parasite exports 8% of its genome (~400 proteins) to various destinations in the host cell. Studies from our lab have shown that proteins belonging to heat shock protein40 (Hsp40) and heat shock protein70 (Hsp70) group of chaperones are also exported to the host compartment. We and others have implicated these chaperones in important processes such as protein trafficking and chaperoning assembly of parasitic proteins into the cytoadherent knobs. As detailed above, malaria parasite invests a lot of energy in exporting a large number of proteins including chaperones in the red blood cell to meet its pathogenic demands. In order to do so, it heavily relies on its secretory pathway. However, it is known that the parasite experiences a significant amount of oxidative stress on account of heme detoxification, its own metabolism and the immune system of the host. The parasite also effluxes large quantities of reduced thiols such as glutathione and homocysteine into the extracellular milieu indicative of redox perturbation. Additionally, the parasite lacks Peroxiredoxin IV, which otherwise localizes in the ER and carries out detoxification of peroxide generated as a result of oxidative protein folding. Together, these factors indicate that maintaining redox homeostasis is a challenging task for the parasite. It also implies that the ER, where the redox balance is even more critical as it requires oxidising environment for protein folding, is predisposed to stress. In light of this fact and the importance of secretory pathway in malaria pathogenesis, we decided to address the ways and mechanisms used by the parasite to tackle perturbations in its secretory pathway. Examination of a canonical unfolded protein response pathway in P. falciparum ER-stress is a condition arising whenever the load of unfolded proteins increases the folding capacity of the ER. However, eukaryotes have evolved a fairly well conserved homeostatic response pathway known as unfolded protein response (UPR) to tackle ER-stress. This signal transduction pathway is composed of three arms involving three ER-transmembrane signal transducers namely; IRE1, ATF6 and PERK. IRE1 brings about splicing of a bZIP transcription factor, XBP1/Hac1 and ATF6 becomes activated upon getting proteolytically cleaved in the Golgi. These transcription factors then migrate to the nucleus where they bind onto the ER-stress elements thereby, leading to the transcriptional up-regulation of the UPR targets such as ER chaperones and components of ER associated degradation (ERAD) pathway which rescue the function of the ER. PERK on the other hand brings about translational attenuation by phosphorylating eIF2α, thereby providing parasite the benefit of time to recover. We started our examination on UPR in Plasmodium by carrying out in silico analysis of the major components of UPR in the parasite by using Homo sapiens protein sequences as the query. We found that the parasite lacks the homologues of all the transcriptional regulators of canonical UPR. Only PERK component of the UPR was found to be present in the parasite. To rule out the existence of the canonical UPR in P. falciparum, we examined the status of UPR targets by subjecting the parasites to treatment with DTT. DTT perturbs the disulfide oxidation in the ER and thereby inhibits protein folding leading to ER-stress. Owing to the missing components of a canonical UPR, we did not find up-regulation of known UPR targets such as ER-chaperones including PfBiP, PfGrp94, PfPDI and ERAD marker Derlin1 at transcript as well as protein level. Owing to the presence of a PERK homologue, phosphorylation of eIF2α followed by attenuation of protein synthesis was observed upon subjecting the parasites to DTT mediated ER-stress. In the absence of a canonical UPR, the parasites were found to be hypersensitive to ER-stress in comparison to the mammalian counterpart. In the presence of DTT, the parasites showed perturbation in the redox homeostasis as indicated by increase in the levels of ROS. Next, we sought to examine if the parasites resorted to any alternate means of increasing the availability of chaperones in the ER. For this, we analysed the involvement of another Hsp70 family member, Hsp70-x which is homologous to BiP and which is known to traverse the ER while getting exported to the erythrocyte compartment. Interestingly, we found that upon exposure to ER-stress, the export of this protein is partially blocked and around 30% of the protein is retained in the ER. On the other hand, there was no effect on the trafficking of another exported chaperone KAHsp40. This indicates that the parasite possibly recruits this pool of retained Hsp70-x for the chaperoning of unfolded proteins in the ER. Global response to ER-stress in P. falciparum To dig deeper into the parasite specific strategies employed for dealing with ER-stress at a global level, we carried out high throughput transcriptomic and proteomic analysis upon subjecting the parasites to DTT mediated ER-stress. Microarray based gene expression profiling was carried out upon subjecting the parasites to DTT mediated ER-stress. We found that the parasite mounts a transcriptional response as indicated by up-regulation of 155 transcripts. In congruence with our biochemical analysis, we did not find up-regulation of ER chaperones as well as ERAD proteins. Functional grouping of the up-regulated genes revealed large number of hypothetical proteins in our list of differentially expressed genes. The genes encoding exported proteins represent yet another abundant class. In the course of examining the involvement of Plasmodium specific transcriptional regulators mediating response to DTT induced ER-stress, we identified 4 genes belonging to the family of AP2 transcription factors. AP2 (Apetela-2) are specific transcription factors which are possessed by apicomplexa and bring about regulation of developmental processes and stress response in plants. On comparing our list of up-regulated genes with the previously known targets of AP2 factors, we found that an entire cascade of AP2 factors is up-regulated upon DTT-mediated ER stress. Thus, AP2 factors appear to be the major stress response mediators as they are together responsible for the up-regulation of 60% of genes identified in this study. In addition, another striking observation made, was the up-regulation of a few sexual stage specific transcripts. 2D Gel electrophoresis and 2D-DIGE based Proteomic analysis indicated an up-regulation of secretory proteins and some components of vesicular trafficking and secretory machinery possibly to overcome the block in the functions of the secretory pathway. ER-stress triggers stage transition in P. falciparum Intrigued by the up-regulation of a few sexual stage specific genes, we were curious to examine if there was a functional significance of this observation. To this end, we decided to investigate the effect of ER-stress on induction of gametocytes, the only sexual stage found in humans. Indeed, we found a two fold induction in the numbers of gametocytes formed upon challenging the parasite with DTT mediated ER-stress. The induction of gametocytogenesis was also observed by using a clinical isolate of P. falciparum for the assay. The DTT treated cultures progressed through the gametocytogenesis pathway normally forming all the five morphologically distinct stages. Then we sought to examine if this phenomenon could be simulated in the physiological scenario as well. For this, we made use of a rodent model of malaria, P. berghei. Two different treatment regimes involving 1) direct injection of increasing concentration of DTT into P. berghei infected mice and 2) injection of DTT pretreated P. berghei infected erythrocytes into healthy mice were followed. In both cases, a significant increase in the gametocyte induction was observed. Having seen that Plasmodium undergoes gametocytogenesis upon exposure to ER-stress not only in in vitro cultures but also in in vivo scenario, we wanted to identify the players involved in the commitment to sexual stage. Recently, a transcription factor belonging to AP2 class of transcription factors, referred to as AP2-G has been implicated in committing the asexual parasites for transition to gametocyte stage. To examine the role of this factor in the phenotype observed by us, we looked at the effect of DTT on AP2-G. Interestingly, we found around 6 folds up-regulation in the expression of AP2-G levels under ER-stress. The downstream targets of AP2-G, many of which are the markers of gametocyte were also found to be up-regulated upon being exposed to DTT mediated ER-stress indicating the launch of a transcriptional program which together works in the direction of transition to gametocytes. Having seen that P. falciparum undergoes ametocytogenesis in response to DTT treatment both under in vitro and in vivo conditions, we sought to look for probable physiological analogue of DTT. Since glutathione is the major cellular redox buffer, critical for redox homeostasis, we quantitated the levels of both oxidized and reduced forms of this non protein thiol using Mass Spectrometric approach. We found that the levels of reduced forms of glutathione significantly increased upon treating the parasites with DTT. This indicates that the levels of glutathione could be one of the physiological triggers of gametocytogenesis. Conclusion In conclusion, our study analyses the ways and mechanisms employed by malaria parasite to cope with perturbations to its secretory pathway. We have established the absence of a canonical UPR in this parasite and our results suggest that Plasmodium has developed a three stage response to cope with ER stress: 1) an early adaptation to increase the local concentration of chaperones in the ER by partially blocking the export of a Hsp70 family member, 2) activation of gene expression cascade involving AP2 transcription factors and 3) a consequent switch to the transmissible sexual stage. Hence, our study throws light on a novel physiological adaptation utilised by malaria parasite to tackle stress to its secretory pathway. Gametocytogenesis, which can be transmitted to the mosquito vector, could hence serve as an effective means to escape ER-stress altogether. Importantly, while it is widely known that stress brings about switch towards sexual stages in P. falciparum, the molecular triggers involved in this process remain obscure in the field of malaria biology. Therefore, our findings also address this long standing question by providing the evidence of ER-stress being one such trigger required for switching to the transmissible sexual stages.

Page generated in 0.1227 seconds