• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Environnements stellaire : des étoiles lambda Boötis aux disques protoplanétaires

Gonzalez, Jean-François 03 June 2005 (has links) (PDF)
J'ai effectué une étude des éléments C, N, et O dans les atmosphères d'étoiles chimiquement particulières de la séquence principale, où ils sont sous-abondants et répartis de manière inhomogène. J'ai recensé les processus physiques qu'il faut inclure dans les calculs d'accélération radiative et montré leur importance relative. Des améliorations majeures par rapport aux approximations usuelles ont été obtenues grâce à l'utilisation systématique des données atomiques du projet OPACITY. Elles permettent de calculer précisément la dépendance en fréquence des opacités, et d'améliorer l'évaluation des largeurs de raies. Les contributions des raies et de la photoionisation sont calculées pour chaque ion et l'accélération totale sur un élément donné est obtenue grâce à un modèle prenant en compte les réactions rapides entre ions. Les accélérations radiatives calculées pour le carbone, l'azote, et l'oxygène, les poussant vers le haut, apparaissent inférieures à la gravité dans tous les modèles d'enveloppe considérés (étoiles de type A à F), pour une large gamme de paramètres, expliquant leurs déficits marquées à la surface de la plupart des étoiles chimiquement particulières. Des tables donnant d'une part l'opacité de ces éléments, d'autre part leur accélération radiative sur une grille contenant de nombreuses conditions de plasma permettent d'effectuer des calculs d'évolution stellaire prenant en compte tous les aspects de la diffusion des éléments C, N, et O, les plus abondants après H et He. <br /> <br />Je me suis ensuite intéressé aux étoiles de type lambda Bootis, un petit sous-groupe singulier d'étoiles chimiquement particulières, dont les anomalies d'abondance ne sont pas expliquées par le modèle de la diffusion radiative. Il s'agirait plutôt d'étoiles jeunes, encore entourées des restes du disque à partir duquel elles se sont formées, et dont elles accrèteraient un gaz appauvri en éléments lourds, ceux-ci s'étant condensés en grains. Afin de vérifier cette hypothèse, nous avons recherché la signature de matière circumstellaire dans le spectre de ces étoiles. Peu d'étoiles de notre échantillon montrent un tel indice et nos résultats suggèrent une anti-corrélation entre la présence de gaz ou de poussières, pouvant caractériser deux états différents dans l'évolution du disque protostellaire. Au cours de cette étude, nous avons découvert par hasard le premier cas de pulsations non radiales dans une étoile de type lambda Bootis, puis montré qu'elles sont communes dans ce groupe. L'identification des modes de pulsation permet de remonter à la structure interne de ces étoiles et à leur état d'évolution, permettant ainsi de tester le modèle d'accrétion. <br /> <br />Mon étude des environnements circumstellaires des étoiles lambda Bootis m'a conduit à m'intéresser aux disques protoplanétaires. Jusqu'à récemment, nous n'avions observé qu'un seul système solaire (le nôtre) dans lequel nous pouvions tester notre compréhension du processus de formation de planètes. Maintenant, plus d'une centaine de planètes ont été découvertes autour d'autres étoiles et les contraintes sur les modèles théoriques sont devenues très serrées. Nous savons que, dans la nébuleuse solaire, les particules de poussière de la taille du micron se sont agglomérées pour former des planètes, objets 10^13 à 10^14 fois plus grands. Bien qu'il y ait beaucoup de travail réalisé sur les dernières étapes de cette formation, et sur la migration de planètes déjà formées, peu de travail a été fait pour développer des modèles hydrodynamiques décrivant l'interaction du gaz et de la poussière dans les disques proto-planétaires. Nous développons un code hydrodynamique SPH permettant de modéliser cette interaction, principalement par la force de friction, entre deux phases: du gaz et des grains de poussière d'une taille donnée. Nous obtenons ainsi la répartition spatiale des grains dans le disque en fonction de leur taille. Ce travail correspond à la thèse de Laure Barrière-Fouchet, qui se termine en 2005. Nous projetons ensuite d'ajouter les mécanismes de coagulation, croissance, et évaporation des grains de poussière en modélisant plusieurs phases pour différentes tailles de grains et la variation du nombre de particules dans chaque phase qui en résulte. Ceci permettra de caractériser les zones du disque les plus favorables à la formation de planétésimaux. Ensuite, il s'agira d'explorer plus profondément les mécanismes de formation de planètes. En effet, si l'on arrive assez bien à faire croître les grains microscopiques jusqu'à une taille de l'ordre du centimètre, les collisions entre ces gros grains les refragmentent et empêchent de dépasser cette taille. Plusieurs solutions sont à envisager pour permettre de passer ce cap: diminution des vitesses de collisions dans les régions plus denses, rôle de la turbulence, etc... <br /> <br />Un peu à part de mes travaux précédents, avec mes collègues de l'ESO, j'ai observé et pris le premier spectre de la contrepartie optique du sursaut gamma GRB980425, qui s'est avéré être une supernova très particulière: SN1998bw. Son spectre en évolution rapide ne permettait pas de classer cette supernova, la première à être associée à un sursaut gamma, dans les types connus. Notre équipe a suivi régulièrement l'évolution de sa courbe de lumière et de son spectre, la somme de données recueillie ayant conduit à un modèle d'hypernova.
2

Etude des réponses temporelle et spectrale de l'instrument ECLAIRs pour la mission SVOM / Studies of temporal and spectral responses of the eclairs instrument for the mission svom

Bajat, Armelle 09 October 2018 (has links)
La mission Franco-chinoise SVOM (Space based multi-band Variable astronomical Object Monitor), est dédiée à l'étude des sursauts ƴ, intenses et brèves bouffées de photons en X et ƴ, associées à la formation catastrophique de trous noirs. SVOM embarquera en 2021 quatre instruments observant du visible jusqu'aux rayonnements ƴ. ECLAIRs, télescope principal, est une caméra à masque codé capable de détecter et localiser, environ 200 sursauts pendant les trois années de vie de la mission. Son plan de détection compte 6400 détecteurs CdTe à contact Schottky, qui sont regroupés en matrice de 32 formant un module. Le plan est divisé en huit secteurs électroniquement indépendants, composés chacun de 25 modules. Chaque électronique est dédiée à la lecture et au codage du temps, de la position, de la multiplicité et des énergies des événements détectés sur un secteur. La validation des fonctionnalités de l'électronique de lecture a permis de s'assurer du bon codage des événements, d'estimer les limites de l'électronique et de construire un modèle analytique de correction efficace des événements perdus. Une application à une courbe de lumière d'un sursaut brillant a permis de valider théoriquement ce modèle et des mesures réalisées sur le prototype ont permis de le valider expérimentalement. D'autre part, un modèle complet de la réponse spectrale a été construit afin de caractériser chaque détecteur pavant le secteur du prototype et d'estimer la réponse du plan de détection des photons mono-énergétiques. Les processus physiques des interactions rayonnement-matière ont été simulés ainsi qu'un modèle de perte de charges puis une convolution gaussienne permet de considérer le bruit électronique. Ce modèle, comptant six paramètres libres, est ajusté à des spectres réalisés sur le prototype. L'étude des paramètres extraits caractérise les performances de chaque détecteur dans toutes les configurations de tension et de t peaking et permet d'optimiser les performances de l'instrument. / The french-chinese mission SVOM (Space-based multi-band variable Astronomical Object Monitor), is dedicated to the study of ƴ-rays bursts, brief and intense X and ƴ photons flashes, associated with the catastrophic formation of black holes. SVOM will embark in 2021 four instruments observing from the visible to ƴ rays. ECLAIRs, the main telescope, is a coded mask camera able to detect and locate, about 200 bursts during the three years nominal life time of SVOM. Its detection plan counts 6400 Schottky CdTe detectors, grouped into a matrix of 32 pixels forming a module. The plan is divided into eight electronically independent sectors, each consisting of 25 modules. Each electronic is dedicated to read and encode, the time, the position, the multiplicity and the energies of the detected events on a sector. The validation of each functionality of the readout electronics allows to ensure the correct encoding of the events, to estimate the limits of the electronics and to build an analytical model of lost events efficient correction. An application to a lightcurve of a bright GRB permits to validate theoretically this model and measurements carried out on the prototype validates it experimentally. On the other hand, a complete model of the spectral response has been established to characterize each detector on the sector of the prototype and to estimate the response of the plan of detection of the mono-energetic photons. The physical processes of the radiation-matter interactions are simulated as well as a model of lost charges then a Gaussian convolution takes into account the electronic noise. This model, counting six free parameters, is fitted to spectra measured on the prototype. The study of the extracted parameters characterizes the performance of each detector in every voltage and t peaking configurations optimizing the performance of the instrument.

Page generated in 0.0472 seconds