• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utilização de condições de contorno para combinação de múltiplos descritores em consultas por similaridade

Barroso, Rodrigo Fernandes 14 March 2014 (has links)
Made available in DSpace on 2016-06-02T19:06:16Z (GMT). No. of bitstreams: 1 6270.pdf: 1934927 bytes, checksum: f1e2441b9a2d898dfdbfdefc98c82a23 (MD5) Previous issue date: 2014-03-14 / Universidade Federal de Sao Carlos / Complex data, like images, face semantic problems in your queries that might compromise results quality. Such problems have their source on the differences found between the semantic interpretation of the data and its low level machine language. In this representation are utilized feature vectors that describe intrinsic characteristics (like color, shape and texture) into qualifying attributes. Analyzing the similarity in complex data, perceives that these intrinsic characteristics complemented the representation of data, as well as is carried out by human perception and for this reason the use of multiple descriptors tend to improve the ability of discrimination data. In this context, another relevant fact is that in a data set, some subsets may present essential specific intrinsic characteristics to better show their rest of the data elements. Based in such premises, this work proposes the use of boundary conditions to identify these subsets and then use the best descriptor combination balancing for each of these, aiming to decrease the existing semantic gap in similarity queries. Throughout the conducted experiments the use of the proposed technique had better results when compared to use individual descriptor using the same boundary conditions and also using descriptors combination for the whole set without the use of boundary conditions. / Dados complexos, como imagens, enfrentam problemas semânticos em suas consultas que comprometem a qualidade dos resultados. Esses problemas são caracterizados pela divergência entre a interpretação semântica desses dados e a forma como são representados computacionalmente em características de baixo nível. Nessa representação são utilizados vetores de características que descrevem características intrínsecas (como cor, forma e textura) em atributos qualificadores. Ao analisar a similaridade em dados complexos percebe-se que essas características intrínsecas se complementam na representação do dado, bem como é realizada pela percepção humana e por este motivo a utilização de múltiplos descritores tende a melhorar a capacidade de discriminação dos dados. Nesse contexto, outro fato relevante é que em um conjunto de dados, alguns subconjuntos podem apresentar características intrínsecas específicas essenciais que melhor evidenciam seus elementos do restante dos dados. Com base nesses preceitos, este trabalho propõe a utilização de condições de contorno para delimitar estes subconjuntos e determinar o melhor balanceamento de múltiplos descritores para cada um deles, com o objetivo de diminuir o gap semântico nas consultas por similaridade. Em todos os experimentos realizados a utilização da técnica proposta sempre apresentou melhores resultados. Em comparação a utilização de descritores individuais com as mesmas condições de contorno e sem condições de contorno, e também a combinação de descritores para o conjunto todo sem a utilização de condições de contorno.
2

Uma abordagem interativa guiada por semântica para identificação e recuperação de imagens / A semantic guided interactive image retrieval approach

Gonçalves, Filipe Marcel Fernandes [UNESP] 17 August 2016 (has links)
Submitted by Filipe Marcel Fernandes Gonçalves null (filipemfg@gmail.com) on 2016-10-13T22:19:26Z No. of bitstreams: 1 Dissertação_Mestrado_Filipe_Marcel_Fernandes_Gonçalves.pdf: 6479864 bytes, checksum: 4596171ab4ce8e8c1a6ce9723f335b36 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-10-19T18:04:08Z (GMT) No. of bitstreams: 1 goncalves_fmf_me_sjrp.pdf: 6479864 bytes, checksum: 4596171ab4ce8e8c1a6ce9723f335b36 (MD5) / Made available in DSpace on 2016-10-19T18:04:08Z (GMT). No. of bitstreams: 1 goncalves_fmf_me_sjrp.pdf: 6479864 bytes, checksum: 4596171ab4ce8e8c1a6ce9723f335b36 (MD5) Previous issue date: 2016-08-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O grande volume de imagens disponível na Web gerado em diferentes domínios requer um conhecimento especializado para sua a análise e identificação. Nesse sentido, recentes avanços ocorreram com desenvolvimento de técnicas de recuperação de imagens baseadas nas características visuais. Entretanto, o gap semântico entre as características de baixo-nível das imagens e aquilo que a imagem representa ainda é um grande desafio. Uma solução para diminuir o gap semântico consiste em combinar a informação de características visuais das imagens com o conhecimento do domínio de tais imagens. Nesse sentido, ontologias podem auxiliar, já que estruturam o conhecimento. Desse modo, o presente trabalho apresenta uma nova abordagem denominada Recuperação Interativa de Imagens Guiada por Semântica (Semantic Interactive Image Retrieval – SIIR) que combina técnicas de recuperação de imagens baseadas no conteúdo (Content Based Image Retrieval – CBIR) e aprendizado não supervisionado, com o conhecimento definido em ontologias. Desse modo, o trabalho em questão propõe uma nova abordagem a fim de simular o papel dos biólogos na classificação de famílias de Angiospermas a partir de uma imagem e seu conteúdo. Para tanto, foi desenvolvida uma ontologia de estruturas e propriedades de plantas com flor e fruto, de modo a conceitualizar e relacionar tais atributos visando a classificação de famílias de Angiospermas. Para análise das características visuais foram utilizados métodos de extração de características de baixo-nível das imagens. Com relação ao aprendizado não supervisionado foi utilizado o algoritmo RL-Sim a fim de melhorar a eficácia da recuperação das imagens. A abordagem combina técnicas CBIR com ontologias ao utilizar um grafo bipartido e um grafo discriminativo de atributos. O grafo discriminativo de atributos permite a análise semântica utilizada para selecionar o atributo que melhor classifica a planta da imagem de busca. Os atributos selecionados são utilizados para formular uma interação com um usuário, de modo a melhorar a eficácia da recuperação e diminuir os esforços necessários na identificação da planta. O método proposto foi avaliado nos conjuntos de dados públicos Oxford Flowers 17 e 102 Classes, de modo que os resultados demonstram alta eficácia para ambos os conjuntos de dados quando comparados com outras abordagens. / A large amount of images is currently generated in many domains, thus requiring specialized knowledge on the identification and analysis. From one standpoint, many advances have been accomplished in the development of image retrieval techniques based on visual image properties. However, the semantic gap between low-level features and high level concepts still represents a challenge scenario. One another standpoint, knowledge has also been structured in many fields by ontologies. A promising solution for bridging the semantic gap consists in combining the information from low-level features with semantic knowledge. This work proposes a new approach denominated Semantic Interactive Image Retrieval (SIIR) which combines Content Based Image Retrieval (CBIR) and unsupervised learning with ontology techniques. We present a novel approach aiming to simulate the biologists role in the classification of Angiosperm families from image sources and their content. In order to achieve this goal, we developed a domain ontology from plant properties and structures, hence relating features from the Angiosperm families. In regard to Unsupervised Learning, we used the RL-Sim algorithm to improve image classification. The proposed approach combines CBIR techniques with ontologies using a bipartite graph and a discriminative attribute graph. Such graph structures allow a semantic analysis used for the selection of the attribute that best classify the plant. The selected attributes are used for formulating the user interactions, improving the effectiveness and reducing the user efforts required. The proposed method was evaluated on the popular Oxford Flowers 17 and 102 Classes datasets, yielding very high effectiveness results in both datasets when compared to other approaches.
3

Mineração visual de imagens aliada a consultas pelos k-vizinhos diversos mais próximos: flexibilizando e maximizando o entendimento de consultas por conteúdo de imagens / Mineração visual de imagens aliada a consultas pelos k-vizinhos diversos mais próximos: flexibilizando e maximizando o entendimento de consultas por conteúdo de imagens

Dias, Rafael Loosli 23 August 2013 (has links)
Made available in DSpace on 2016-06-02T19:06:11Z (GMT). No. of bitstreams: 1 5726.pdf: 4603491 bytes, checksum: 0fe3fa824a018f481106303c4816bf07 (MD5) Previous issue date: 2013-08-23 / Financiadora de Estudos e Projetos / Content-Based Image Retrieval systems use visual information like color, shape and texture to represent images in feature vectors. The numerical representation found for the images is used in query execution through a metric to evaluate the distance between vectors. In general, there is an inconsistency in the evaluation of similarity between images according to human perception and the results computed by CBIR systems, which is called Semantic Gap. One way to overcome this problem is by the addition of a diversity factor in query execution, allowing the user to specify a degree of dissimilarity between the resulting images and changing the query result. Adding diversity in consultation, however, requires high computational cost and the reduction of possible subsets to be analyzed is a difficult task to be understood by the user. This masters degree thesis aims to make use of Visual Data Mining techniques applied to queries in CBIR systems, improving the interpretability of the measure of similarity and diversity, as well as the relevance of the result according to the judgment and prior knowledge of the user. The user takes an active role in the retrieval of images by their content, guiding its result and, consequently, reducing the Semantic Gap. Additionally, a better understanding of the diversity and similarity factors involved in the query is supported by visualization and interaction techniques. / Sistemas de recuperação de imagens por conteúdo (do Inglês, Content-Based Image Retrieval - CBIR) utilizam informações visuais de cor, forma e textura para representar as imagens em vetores de características. A representação numérica encontrada para as imagens é utilizada na execução da consulta através de uma métrica que avalie a distância entre os vetores. Em geral, existe uma inconsistência entre a percepção do ser humano na avaliação de similaridade entre imagens se comparada com a computada por sistemas CBIR, sendo esta descontinuidade denominada Gap Semântico. Adicionar um fator de diversidade na consulta tem-se mostrado como uma maneira de superar este problema, permitindo que o usuário especifique o grau de dissimilaridade entre as imagens resultantes e altere o resultado da consulta. Adicionar diversidade em consulta, no entanto, requer alto custo computacional e a redução das possibilidades de conjuntos para resposta é de difícil entendimento para o usuário. Este trabalho de mestrado propôs a utilização de técnicas de Mineração Visual de Dados (MVD) aplicadas sobre consultas em sistemas CBIR, melhorando a interpretabilidade da medida de similaridade e diversidade, assim como a relevância do resultado obtido. O usuário passa a exercer um papel ativo na consulta por conteúdo de imagens, permitindo que o mesmo dirija o processo, aproximando o resultado ao esperado pela cognição humana e reduzindo o gap semântico.

Page generated in 0.0711 seconds