• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 25
  • 20
  • 11
  • 7
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 240
  • 240
  • 212
  • 73
  • 65
  • 65
  • 58
  • 49
  • 36
  • 30
  • 29
  • 29
  • 28
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spatial variation of soil methane and nitrous oxide emissions in subarctic environments of Churchill, Manitoba

Churchill, Jacqueline A. 07 June 2007 (has links)
Global warming, associated with elevated levels of greenhouse gases is expected to alter hydrologic regimes, permafrost extent and vegetation composition in the Hudson Bay Lowlands (HBL). Greenhouse gas (respiration, CH4 and N2O; GHG) emissions and soil gas concentrations were determined over the growing seasons of 2005 and 2006 from numerous habitats within three dominate ecosystems within the HBL, a polygonized-peat plateau, northern fringe boreal forest and palsa fen, near Churchill, Manitoba. Nitrous oxide emissions and soil concentrations were near zero however, a trend for very slight production of N2O was observed at dry aerobic sample positions while very slight consumption occurred at very wet sample locations. “Hot-spots” of intense CH4 emissions and soil concentrations occurred in the sedge-dominated areas of high moisture and plant productivity, whereas areas of low moisture and plant productivity resulted in slight CH4 consumption. Of all the ecosystems studied, the palsa fen had the greatest CH4 production, with carbon losses from CH4 occurring at rates of approximately 50 g C m-2 during the growing season. A peat plateau ecosystem site was also used to compare GHG emissions using a similar vegetation type (Cladina stellaris) and under differing soil conditions. Based on the results, slight gradients in soil conditions such as moisture content, peat accumulation and active layer depths altered respiration emissions but did not significantly affect CH4 and N2O fluxes. The differences in GHG emissions were not as great as those between different plant community types, which suggest plant community types could be used to predict GHG emissions in similar environments. / October 2007
12

INTEGRATING WIND GENERATED ELECTRICITY WITH SPACE HEATING AND STORAGE BATTERIES

Muralidhar, Anirudh 20 December 2010 (has links)
The world faces two major energy-related challenges: reducing greenhouse-gas emissions and improving energy security. Wind-electricity, a clean and environmentally sustainable energy source, appears promising. However, its intermittency is problematic when used as a supply for on-demand electricity. Wind-electricity can be used for space heating when combined with thermal-storage systems; although its intermittency can result in periods of excess electricity. To reduce the excess, this thesis proposes using wind-electricity for thermal-storage and electric-vehicles. Four charging procedures are designed and developed. Data from an eastern Canadian wind-farm is used to demonstrate the procedures. The results are compared and discussed in terms of the supply of wind-electricity and its ability to meet the energy requirements of these services. Depending on the procedure, wind-electricity displaced between 20 and 26 GWh of energy previously required for space-heating and transportation, demonstrating that wind-electricity, with intermittently-chargeable loads using storage, is a solution to the intermittency problem.
13

Municipal perspectives on greenhouse gas reductions : exploring Strathcona County

Seabrook, Leah 15 June 2010 (has links)
This thesis considers perspectives on municipal greenhouse gas emission reductions. It is timely study as it is one point of entry to analyzing emissions and contemplates the degree of local responsibility, as well as the barriers and possible solutions to creating action. By using a case study approach, Strathcona County was examined in its real-life context to determine the outlook at the local scale. Attention to varying government action plans, as well as scientific research was examined to verify relevance of municipal action. Using survey and interview methods, perspectives from key decision makers were compared and contrasted. The results indicated that there is a concentration at the municipal level on actions that will directly or indirectly benefit climate change. A multi-governance angle, as well as institutionalizing the concept into the organization and community will create progress. Solutions focusing on land use planning, transportation and community energy are emerging. This study demonstrates the value of municipal action as an essential element to achieving long term, cost effective and successful reductions, and recognizes that it is a supplement rather than an alternative to provincial and national plans.
14

Evaluating the Impact of Climate Change Mitigation Strategies on Water Distribution System Design and Optimization

MacLeod, Stephanie Patricia 27 August 2010 (has links)
In response to growing environmental concerns, policy makers in Canada have been developing climate change mitigation strategies that will enable Canada to meet medium and long-term greenhouse gas (GHG) emission reduction targets. The water industry is energy- and carbon-intensive, thus the magnitude and long-term uncertainty of proposed carbon mitigation policies could have implications for water distribution system capital planning decisions that are made today. The intent of this thesis was to examine the implications of discount rate and carbon price uncertainty on cost, energy use and GHG emissions in the design/optimization of the Amherstview water distribution system in Loyalist Township, Ontario, Canada. A non-dominated sorting genetic algorithm is coupled with the hydraulic solver EPANET2 in a single-objective optimization approach to identify network expansion designs that minimize total cost as the sum of: i) capital cost of installing new and parallel pipes and of cleaning and lining existing pipes; ii) operation cost of electricity for pumping water; and iii) carbon cost levied on electricity used for pumping water. The Amherstview system was optimized for a range of discount rates and carbon prices reflective of possible climate change mitigation strategies in Canada over the next 50 years. The problem formulation framework was developed according to a “real-world” municipal approach to water distribution system design and expansion. Decision variables such as pipe sizes are restricted to “real-world” commercially-available pipe diameters and parameter values are chosen according to engineering judgment and best-estimates. Parameter uncertainty is characterized by sensitivity analysis rather than the more computationally-demanding and data-intensive Monte Carlo simulation method. The impact of pipe material selection on energy use and GHG emissions was investigated for polyvinyl chloride and cement-mortar lined ductile iron pipes. Results from this first-ever study indicate that the discount rate and carbon prices investigated had no significant influence on energy use and GHG emissions in the Amherstview system. Pipe material selection was also found to minimally affect the amount of GHG emitted in the Amherstview system. / Thesis (Master, Civil Engineering) -- Queen's University, 2010-08-26 15:01:27.174
15

Spatial variation of soil methane and nitrous oxide emissions in subarctic environments of Churchill, Manitoba

Churchill, Jacqueline A. 07 June 2007 (has links)
Global warming, associated with elevated levels of greenhouse gases is expected to alter hydrologic regimes, permafrost extent and vegetation composition in the Hudson Bay Lowlands (HBL). Greenhouse gas (respiration, CH4 and N2O; GHG) emissions and soil gas concentrations were determined over the growing seasons of 2005 and 2006 from numerous habitats within three dominate ecosystems within the HBL, a polygonized-peat plateau, northern fringe boreal forest and palsa fen, near Churchill, Manitoba. Nitrous oxide emissions and soil concentrations were near zero however, a trend for very slight production of N2O was observed at dry aerobic sample positions while very slight consumption occurred at very wet sample locations. “Hot-spots” of intense CH4 emissions and soil concentrations occurred in the sedge-dominated areas of high moisture and plant productivity, whereas areas of low moisture and plant productivity resulted in slight CH4 consumption. Of all the ecosystems studied, the palsa fen had the greatest CH4 production, with carbon losses from CH4 occurring at rates of approximately 50 g C m-2 during the growing season. A peat plateau ecosystem site was also used to compare GHG emissions using a similar vegetation type (Cladina stellaris) and under differing soil conditions. Based on the results, slight gradients in soil conditions such as moisture content, peat accumulation and active layer depths altered respiration emissions but did not significantly affect CH4 and N2O fluxes. The differences in GHG emissions were not as great as those between different plant community types, which suggest plant community types could be used to predict GHG emissions in similar environments.
16

Spatial variation of soil methane and nitrous oxide emissions in subarctic environments of Churchill, Manitoba

Churchill, Jacqueline A. 07 June 2007 (has links)
Global warming, associated with elevated levels of greenhouse gases is expected to alter hydrologic regimes, permafrost extent and vegetation composition in the Hudson Bay Lowlands (HBL). Greenhouse gas (respiration, CH4 and N2O; GHG) emissions and soil gas concentrations were determined over the growing seasons of 2005 and 2006 from numerous habitats within three dominate ecosystems within the HBL, a polygonized-peat plateau, northern fringe boreal forest and palsa fen, near Churchill, Manitoba. Nitrous oxide emissions and soil concentrations were near zero however, a trend for very slight production of N2O was observed at dry aerobic sample positions while very slight consumption occurred at very wet sample locations. “Hot-spots” of intense CH4 emissions and soil concentrations occurred in the sedge-dominated areas of high moisture and plant productivity, whereas areas of low moisture and plant productivity resulted in slight CH4 consumption. Of all the ecosystems studied, the palsa fen had the greatest CH4 production, with carbon losses from CH4 occurring at rates of approximately 50 g C m-2 during the growing season. A peat plateau ecosystem site was also used to compare GHG emissions using a similar vegetation type (Cladina stellaris) and under differing soil conditions. Based on the results, slight gradients in soil conditions such as moisture content, peat accumulation and active layer depths altered respiration emissions but did not significantly affect CH4 and N2O fluxes. The differences in GHG emissions were not as great as those between different plant community types, which suggest plant community types could be used to predict GHG emissions in similar environments.
17

Evaluating the use of marginal abatement cost curves applied to greenhouse gas abatement in the UK agriculture

Eory, Veronika January 2016 (has links)
Climate change is arguably the most important global societal challenge. Developing ‘low-carbon societies’, i.e. reducing greenhouse gas (GHG) emissions and adapting to a changing climate, is becoming a policy goal across the globe. Agriculture plays an important role in this transformation. The sector is highly vulnerable to climate variability, and is a significant source of emissions. At the same time, it has potential for reducing GHG emissions and also provides opportunity for carbon sequestration in soils and crop biomass. Policy support for mitigating GHG emissions is being informed by scientific evidence on the effectiveness and costs of mitigation opportunities. This information is frequently depicted in marginal abatement cost curves (MACCs), an assessment tool which can help to visualise the hierarchy of technical measures and their cumulative level of abatement. Similarly to other assessment tools, MACCs’ suitability to provide information has certain limitations. Furthermore, different derivations of MACCs are appropriate to answer different questions. In order to draw both informative and reliable conclusions for policy decisions, the characteristics of the MACCs and the resulting limitations have to be presented clearly. This dissertation seeks to answer the general question whether the agricultural MACCs can be improved so that they provide more comprehensive and tailored information to policy makers. In particular five limitations of the MACCs are discussed: the lack of representation of wider effects, the issue of cost-effectiveness of policy instruments and the inclusion of transaction costs, the uncertainty in the MACCs, the boundaries and the heterogeneity of the analysis. Theoretical frameworks are developed and case study examples are provided for these limitations, and the frameworks are assessed in terms whether they achieve the goal of providing more comprehensive information to policy makers than a conventional MACC. Furthermore, the dissertation summarises the available methodologies and applications in agriculture to enhance the MACCs and provides guidelines for researchers and policy makers about the choice of methods and the communication of the results in order to improve the use of MACCs in the policy process.
18

Utilisation of non-linear modelling methods in flue-gas oxygen-content control

Leppäkoski, K. (Kimmo) 25 October 2006 (has links)
Abstract Non-linear methods have been utilised in modelling the processes on a flue-gas oxygen-content control system of a power plant. The ultimate objective is to reduce NOx and CO emissions by enhancing the control system. By investigating the flue-gas emission control strategy, the major factors affecting the flue-gas emissions have been determined. A simulator has been constructed, and it emulates a real process automation system and its physical processes. The process models of the simulator are: a flue-gas oxygen-content model, a secondary air flow model, a primary air flow model and a fuel feeding screw model (a fuel flow). The effort has been focused on two plant models: the flue-gas oxygen-content model and the secondary air flow model. Combustion is a non-linear, timevariant, multi-variable process with a variable delay. The secondary air model is a non-linear, timeinvariant (in principle), multi-variable system. Both phenomenological modelling (mass and energy calculations) and black-box modelling (neural networks) have been utilised in the Wiener/Hammerstein structures. It is possible to use a priori knowledge in model modifying, and therefore the model of flue-gas oxygen-content can be tuned on site. The simulator with precalculated parameters was tested in a full-scale power plant and a pilot-scale circulating fluidised bed boiler. The results in the power plant were remarkable since NOx emissions decreased significantly without increasing CO emissions.
19

Long-term effects of tillage practices on soil physical, chemical, and biological health, and its economic and ecologic implications

Weidhuner, Amanda Marie 01 December 2021 (has links)
Demands for sustainable crop production are increasing to cope with threats of climate change and diversity loss. Tillage is one of the main farming practices that could impact crop production, soil, and air quality. We utilized a long-term (>48-yr old) tillage trial to evaluate four tillage systems including: (i) moldboard plow (MP), (ii) chisel-disk (grower’s current practice) (CD), (iii) alternate tillage [2-yr no-till (NT) and 1-yr MP; AT], and (iv) NT on corn (Zea mays L.) and soybean (Glycine max L.) grain production, nutrient removal and balances, soil physical, chemical, and biological properties, and nitrous oxide (N2O) emissions. We found that a switch from intensive tillage practices (CD and MP) to NT resulted in (i) similar corn and soybean grain yield, nutrient removal, and balances; (ii) increased soil aggregation and aggregate stability; (iii) increased soil organic carbon (C), active C, and aggregate associated C and nitrogen at 0-15 cm soil depth (iv) had consistence penetration resistance at the plow depth (30 cm depth), lower bulk density, higher soil porosity and available water capacity; (v) had lower soil NO3-N and TN, two-yr cumulative N2O-N emissions, and yield-scaled N2O-N (vi) greater soil ecosystem stability based on nematode community populations; (vii) increased earthworm abundance and biomass, diversity and species evenness, and percentage of epigeic ecotypes. Interestingly, NT did not influence soil C beyond topsoil indicating a limitation for NT to sequester C at deeper soil layers. These findings indicate improved soil in NT vs. other tillage practices provides C sequestration and reduced environmental footprints, without impacting grain yield while improving functional soil biology. Because the cost of NT operations are lower than other tillage practices, we concluded continuous NT could be a step towards sustainable crop production. To further improve the sustainability of crop production, other practices (e.g. cover cropping, crop diversification, soil amendments etc.) should be integrated into continuous NT practices.
20

Carbon Footprint Accounting Using Various Tools and Techniques, Comparison and Uncertainties

Sharma, Neha January 2010 (has links)
No description available.

Page generated in 0.0995 seconds