• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 24
  • 17
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 189
  • 189
  • 38
  • 26
  • 25
  • 23
  • 22
  • 21
  • 18
  • 18
  • 17
  • 15
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Comparing Theory and Experiment for Analyte Transport in the First Vacuum Stage of the Inductively Coupled Plasma Mass Spectrometer

Zachreson, Matthew R. 08 December 2012 (has links) (PDF)
The Direct Simulation Monte Carlo algorithm as coded in FENIX is used to model the transport of trace ions in the first vacuum stage of the inductively coupled plasma mass spectrometer. Haibin Ma of the Farnsworth group at Brigham Young University measured two radial trace density profiles: one 0.7 mm upstream of the sampling cone and the other 10 mm downstream. We compare simulation results from FENIX with the experimental results. We find that gas dynamic convection and diffusion are unable to account for the experimentally-measured profile changes from upstream to downstream. Including discharge quenching and ambipolar electric fields, however, makes it possible to account for the way the profiles change.
122

The Effects of Gas Composition, Gas Flow Rate and Reaction Temperature on the Reduction Behaviour of Fixed Beds of Hematite Pellets

Rounsevell, John Marshall 05 1900 (has links)
<p> An Experimental investigation has been conducted to determine the effects on degree of reduction and efficiency of utilization of gases of changes in the levels of several variables when reducing fixed beds of commercial hematite pellets. The effects on reduction behaviour of changes in the levels of reducing gas composition and flow rate, and reaction temperature, were determined by graphical and numerical techniques.</p> / Thesis / Master of Engineering (MEngr)
123

A Comparison of Gas Flow Resistane in Parker Flex-tip and Mallinckrodt RAE Nasal Endotracheal Tubes

Perry, Joshua L. January 2013 (has links)
No description available.
124

[pt] AVALIAÇÃO DA INCERTEZA DE MEDIÇÃO DO VOLUME DE QUEIMA DE GÁS NATURAL / [en] UNCERTAINTY EVALUATION ON FLARE GAS VOLUME MEASUREMENT

16 November 2021 (has links)
[pt] A fim de garantir a segurança das instalações marítimas de produção de óleo e gás natural, parte do gás produzido é continuamente queimada, em função de condições específicas. Tais condições incluem paradas de emergência ou o alívio de inventário de gás devido a flutuações operacionais. A queima nestes ambientes acontece a uma grande faixa de vazões de gás, o que resulta em reduzido número de alternativas tecnológicas para sua medição. A medição de vazão a partir da tecnologia ultrasônica por tempo de trânsito vem sendo largamente utilizada, porém com incertezas relativamente elevadas, dadas as limitações da solução tecnológica. Devido a tais limitações, diversos órgãos reguladores da área de óleo e gás ao redor do mundo admitem diferentes percentuais para estimativa de incerteza da queima. No Brasil, a regulamentação estabelece um percentual máximo de 5 porcento para a queima de gás, não sendo porém específica quanto a que grandeza refere-se (vazão volumétrica ou volume). Esta dissertação traz um estudo sobre a incerteza de volumes horários, diários e mensais de gás produzidos por uma unidade de produção marítima por dezesseis meses, avaliando o impacto da incerteza na medição de vazão de queima sobre a incerteza dos volumes apurados. Foi avaliado o impacto de aspectos da medição ultrasônica de vazão de gás e da computação de volumes de produção a partir desta nos volumes apurados. Conclui-se que a medição de vazão e sua respectiva incerteza afetam de modo pouco significativo a incerteza dos volumes computados de queima. / [en] In order to assure safety at maritime oil & gas production facilities, part of the produced gas is continually burned (flared), depending upon specific operating conditions. These conditions include emergency shutdown and gas inventory relief due to process fluctuations. In such environments, gas flaring occurs at very large flow rate range, reducing the number of available technological choices for flow rate measurement. Transit-time ultrasonic flow measurement has been commonly used for this task, although with relatively high uncertainties due to technology limitations. Because of that, various oil & gas regulator authorities around the world impose different rules for flare measurement uncertainty. In Brazil, the regulation establishes a maximum percentage of 5 percent for flare measurement uncertainty, but it is not specific about the target (flow rate or volume). This dissertation presents a study on the effects of flow rate uncertainty on hourly, daily and monthly produced volume uncertainty in the maritime environment for a 16-month period, evaluating the impact of flare flow rate measurement on volume uncertainty. Aspects of gas transit-time ultrasonic flow rate measurement and volume computation over resulting volumes are evaluated. The conclusion is that flow rate measurement and its associated uncertainty have little effect on computed volume uncertainties.
125

Studies of combustion and crevice gas motion in a flow-visualization spark-ignition engine

Namazian, Mehdi January 1981 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Mehdi Namazian. / Ph.D.
126

Quantitative basis for component factors of gas flow proportional counting efficiencies

Nichols, Michael 21 August 2009 (has links)
Counting efficiencies were determined by empirical measurement and Monte Carlo simulation for carbon-14, strontium-89, strontium-90, and yttrium-90 standards counted by low-background gas flow proportional counter for strontium carbonate precipitates in the range from 3 to 33 mg cm⁻². The maximum beta particle energies range from 0.156 MeV for carbon-14 to 2.28 MeV for yttrium-90. The parameters for estimating the counting efficiency are summarized for sources with areal thickness of 14 mg cm⁻² and over the range in strontium carbonate areal thickness from 0.1 mg cm⁻² to 33 mg cm⁻². Uncertainty budgets providing estimates of the uncertainty, sources of variability in the calibration process, and the total expanded uncertainty are presented. Information is presented for the Monte Carlo simulation regarding the composition of the detector window, the energy excluded by the amplifier discriminator of the counting system, and the physical density of materials for this analytical process. The histogram normalization routine implemented within MCNP is described and found to bias the probability distribution for beta-particle energy spectra. The difference in the specification of the probability distribution for beta-particle energy spectra in ICRU 56 Appendix D and MCNP requirements are described and a correction for the bias introduced during the normalization process for beta spectra is provided. Counting efficiencies determined by empirical measurement and Monte Carlo simulations agree within the total expanded uncertainties of the measurements and the uncertainties of the Monte Carlo simulations.
127

The flow of a compressible gas through an aggregate of mobile reacting particles /

Gough, P. S. (Paul Stuart) January 1974 (has links)
No description available.
128

Molecular Simulation of Chemically Reacting Flows Inside Micro/Nano-channels

Ahmadzadegan, Amir 23 September 2013 (has links)
The main objective of this thesis is to study the fundamental behaviour of multi-component gas mixture flows in micro/nano-channels undergoing catalytic chemical reactions on the walls. This work is primarily focused on nano-scale reacting flows seen in related applications; especially, miniaturized energy sources such as micro-fuel cells and batteries. At these geometries, the order of the characteristic length is close to the mean free path of the flowing gas, making the flow highly rarefied. As a result, non-equilibrium conditions prevail even the bulk flow and therefore, continuum assumptions are not held anymore. Hence, discrete methods should be adopted to simulate molecular movements and interactions described by the Boltzmann equation. The Direct Simulation Monte Carlo (DSMC) method was employed for the present research due to its natural ability for simulating a broad range of rarefied gas flows, and its flexibility to incorporate surface chemical reactions. In the first step, fluid dynamics and the heat transfer of H₂/N₂ and H₂/N₂/CO₂ gas mixture slip flows in a plain micro-channel are simulated. The obtained results are compared to the corresponding data achieved from Navier-Stokes equations with slip/jump boundary conditions. Generally, very good agreements are observed between the two methods. It proves the ability of DSMC in replicating the fluid properties of multi-component gas mixtures even when high mass discrepancies exist among the species. Based on this comparison, the proper parameters are set for the prepared DSMC code, and the appropriate intermolecular collision model is identified. It is also found that stream variables should be calculated more accurately at flow boundaries in order to simulate the intense upstream diffusion emerging at low velocity flows frequently seen in micro/nano-applications. Therefore, in the second step, a novel pressure boundary condition is introduced for gas mixture flows by substituting the commonly used Maxwell velocity distribution with the Chapman-Enskog distribution function. It is shown that this new method yields better results for lower velocity and higher rarefaction level cases. In the last step, a new method is proposed for coupling the flow field simulated by DSMC and surface reactions modelled by the species conservation ODE system derived from the reaction mechanism. First, a lean H₂/air slip flow subjected to oxidation on platinum coated walls in a flat micro-channel 4μm in height is simulated as a verification test case. The results obtained are validated against the solutions of the Navier-Stokes equations with slip/jump boundary conditions and very good conformity is achieved. Next, several cases undergoing the same reaction with Reynolds numbers ranging from 0.2 to 3.6 and Knudsen numbers ranging from 0.025 to 0.375, are simulated using the verified code to investigate the effects of the channel height ranging from 0.5μm to 2μm , the inlet mass flow rate ranging from 5 kg/m².s to 25 kg/m².s, the inlet temperature ranging from 300K to 700K, the wall temperature ranging from 300K to 1000K, and the fuel/air equivalence ratio ranging from 0.28 to 1.5. Some of the findings are as follows: (1) increasing the surface temperature from 600K to 1000K and/or the inlet temperature from 300K to 700K results in negligible enhancement of the conversion rate, (2) the optimum value of the equivalence ratio is on the fuel lean side (around 0.5), (3) the efficiency of the reactor is higher for smaller channel heights, and (4) increasing the inlet mass flux elevates the reaction rate especially for the smaller channels; this effect is not linear and is more magnified for lower mass fluxes.
129

Modélisation de la turbulence dans des ecoulements de plasma en milieu industriel /

Gagnon, Éric, January 1996 (has links)
Mémoire (M.Eng.)--Université du Québec à Chicoutimi, 1996. / Document électronique également accessible en format PDF. CaQCU
130

Técnicas avançadas para análise de escoamento bifásico gás-líquido em golfadas

Ofuchi, César Yutaka 08 July 2011 (has links)
IBP, FINEP, ANP / A caracterização de escoamentos bifásicos em golfadas é de grande valia para o monitoramento e controle de processos industriais em que ele ocorre. Neste cenário, o presente trabalho tem como objetivo utilizar técnicas de ultrassom, wire-mesh e filmagem de alta velocidade, para obter parâmetros que permitam a caracterização do fenômeno. Os dados experimentais foram obtidos em uma planta de testes, onde foi gerado um escoamento bifásico horizontal água-ar, no padrão em golfadas, em uma linha de 9 m de comprimento e 26 mm de diâmetro. Os dados adquiridos por ultrassom e wire-mesh foram tratados para obter informações de fração de vazio e de velocidade da bolha. Para auxiliar a análise, foram utilizadas outras técnicas como filmagens de alta velocidade e modelos mecânicos conhecidos na literatura. / Characterization of two-phase flows is important for monitoring and control of many industrial processes. In this regard, the proposed paper uses ultrasonic techniques, wire-mesh sensor and high-speed videometry to extract parameters of interest in horizontal gas-liquid two-phase slug flows. The experimental data were obtained from a test rig, where two- phase flow was generated in a horizontal line of 9 meters in length and 26mm in diameter. The ultrasound and wire-mesh data were processed to obtain parameters for characterizing the two-phase slug flow, such as void fraction and the elongated bubble velocity. To assist the analysis, other techniques such as high speed image acquisitions and theoretical models well know in the literature were used.

Page generated in 0.0939 seconds